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ABSTRACT
With the ever-increasing complexity of microprocessors, microar-
chitectural design becomes over-challenging. Design space explo-
ration (DSE) of microarchitecture configurations to obtain high-
quality designs with different PPA trade-offs is time-consuming,
due to the huge configuration space and inefficient VLSI verification
flow. Many DSE frameworks proposed in previous works failed to
systematically analyze the contribution of each algorithmic compo-
nent to the full flow. This paper provides a novel methodology for
designing DSE frameworks by separating DSE flow into stages, and
discussing algorithmic instantiations in each stage with theoretical
and experimental analyses. Newly formulated DSE frameworks
guided by this methodology achieve state-of-the-art results in IC-
CAD’22 DSE contest evaluation environments.
ACM Reference Format:
Tianji Liu*, Qijing Wang*, Lixin Liu, Fangzhou Wang, and Evangeline F.Y.
Young. 2024. On Advanced Methodologies for Microarchitecture Design
Space Exploration. In Great Lakes Symposium on VLSI 2024 (GLSVLSI ’24),
June 12–14, 2024, Clearwater, FL, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3649476.3658764

1 INTRODUCTION
As the demand for computing power continues to rise, modern
microprocessors such as central processing units (CPUs) have be-
come increasingly complex. In order to design and produce suitable
and high-quality microprocessors for various requirements, explor-
ing the trade-off of various targets (e.g., performance, power, area
(PPA)) for different configuration combinations in microarchitec-
tures, i.e., design space exploration (DSE), has become a key step
in the whole process. Nowadays, due to the increasing number of
configurations involved in microarchitectures, the relationships
between components and performance have become very complex,
making it extremely difficult to manually select an appropriate
combination based on prior knowledge. A commonly adopted ap-
proach is to use a very large-scale integration (VLSI) verification
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Figure 1: The methodology to construct a DSE framework.

flow implemented by software simulators to evaluate the PPAs of
configuration combinations. However, as the flow involves many
steps and is thus extremely time-consuming, it is unrealistic to
obtain the knowledge of the target distribution by evaluating every
configuration combination in a huge design space.

A promising approach to resolve this problem is by modeling
the relationship between the configurations and the targets using a
small number of samples in the design space, and predicting the
targets of the unsampled points using the model, so that the number
of verifications needed can be greatly reduced. There has emerged
a bunch of microarchitecture DSE works that are based on machine
learning models thanks to their high accuracy, including the adop-
tion of Random Forest [9] and active learning based AdaBoost [7],
to name a few. More recently, the work [2] used a microarchitecture-
aware active learning algorithm and a Gaussian Process model with
deep kernel learning, obtaining promising results.

A DSE framework is usually composed of a few algorithmic
components (e.g., modeling method, new point sampling strategy).
Although a variety of DSE frameworks have been proposed in pre-
vious works, the contributions of each algorithmic component to
the performance of the full DSE flow are rarely analyzed in a sys-
tematic way. While such works provide useful out-of-the-box DSE
frameworks for microprocessor designs, they do not give much
insight for future research on new DSE algorithms. To fill in this
research gap, we develop a novel methodology for guiding how
to obtain a high-performance DSE flow in this work, as illustrated
in Figure 1. First, a skeleton of the DSE flow is determined in which
the basic units are subroutines that achieve certain functionali-
ties (Figure 1a). Each basic unit is called a stage of the DSE flow.

https://doi.org/10.1145/3649476.3658764
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3649476.3658764


GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Liu, et al.

Second, a list of possible algorithmic instantiations of each stage
is comprehensively examined, by designing metrics, performing
experimental and theoretical analyses dedicated to each stage (Fig-
ure 1b). Third, theoretically sound and practically effective DSE
flows are obtained as combinations of some algorithmic instantia-
tions based on the stage-wise studies, and finally evaluation of the
overall DSE flow is performed (Figure 1c).

As a case study, we utilize this methodology to design new DSE
frameworks on the Berkeley Out-of-Order Machine (BOOM) [4]
microarchitecture. The outcomes of our case study are novel DSE
flows that outperform previous works [2, 7, 9] and the contest top-3
teams in terms of Pareto optimality when tested in the ICCAD’22
DSE contest [8] evaluation environments.

2 BACKGROUNDS
Before conducting the BOOM case study, we first introduce some
background concepts as well as the formulation and objective of
the microarchitecture design space exploration problem.

Terminologies. The design space X is the set of all feasible mi-
croarchitecture configuration vectors1. The target/output space Y
is the set of target values (i.e., PPAs) of all the configurations in X.
A model refers to a quantitative description of the relation between
the design space and the target space. Sampling refers to selecting
one configuration vector to obtain the corresponding PPA values
through the VLSI verification flow.

Module space. Some algorithms require that the𝑚-dimensional
input space is a hyper-rectangle, or in the discrete settings, a grid-
like space in which there is a one-to-one correspondence between
any 𝑚-tuple of integers (𝑖1, . . . , 𝑖𝑚) and a feasible point, where
1 ≤ 𝑖 𝑗 ≤ 𝑙 𝑗 and 𝑙 𝑗 is the number of feasible values for the 𝑗-th
input variable. In our case, the BOOM microarchitecture design
space X is not grid-like. However, if we consider the sub-vector
of a particular architectural module (e.g., LSU) containing all the
variables of this module, and represent each feasible value of this
sub-vector using a unique indexing integer, every configuration
vector in X is transformed into a new vector consisting of 𝑐 index-
ing integers where 𝑐 is the number of modules. We call the space
containing all such vectors as the module space C. As the modules
are formulated without inter-dependency (Section 4.1), this module
space is grid-like.

Problem Formulation. Since the area, power and performance
metrics for different microarchitecture configurations are correlated
and need to be traded-off, we aim to find the configurations that
correspond to the Pareto optimal PPAs P(Y) = {𝒚 ∈ Y : ∀𝒚′ ∈
Y \ {𝒚},𝒚′ ⪰̸ 𝒚}, where “𝒚′ ⪰ 𝒚” stands for “𝒚′ dominates 𝒚”, i.e.,
𝑦′
𝑖
≥ 𝑦𝑖 for all target variables 𝑖 = 1, . . . , 𝑡 (𝑡 = 3 in our case). How-

ever, in practice, the Pareto optimal points may not be discovered
due to limited resources, and we thus leverage the Pareto hypervol-
ume [13] as a metric indicating the “degree of Pareto optimality”
of the selected points quantitatively. For a set of obtained PPAs
D𝑦 , the Pareto hypervolume of P(D𝑦) with respect to a reference

1We simply call a configuration vector a configuration when there is no ambiguity.

point 𝒗ref ∈ R𝑡 is defined as

HV𝒗ref (P(D𝑦)) =
∫
R𝑡

[
𝒚 ⪰ 𝒗ref

] [ ∨
𝒚′∈P(D𝑦 )

𝒚′ ⪰ 𝒚
]
d𝒚, (1)

where [·] is the Iverson bracket which takes value 1 if the inner
statement is true and 0 otherwise. The reference point 𝒗ref can be
chosen as an arbitrary point that is dominated by every point in
P(D𝑦)2. Then, our DSE problem can be formalized as follows.

Problem1 (Microarchitecture Design Space Exploration, DSE). For
a design space X, select a set of microarchitecture configurations
D𝑥 = {𝒙1, . . . , 𝒙𝑛} ⊆ X and obtain the corresponding PPA values
D𝑦 = {𝒚1, . . . ,𝒚𝑛} ⊆ Y via the VLSI verification flow under the
constraint of limited resources (e.g., the number of configurations
𝑛 or the total time of VLSI flows is no greater than a given value),
such that the Pareto hypervolume HV(P(D𝑦)) is maximized.

3 METHODOLOGY
This section performs the first and second step of our methodology.

3.1 DSE Flow Skeleton
In this work, we examine the algorithm of interests using a skeleton
shown in Figure 1a where the algorithms being studied serve as
instantiations of different stages. This framework begins with an
initial sampling stage to obtain some sample points to construct the
first model. It then performs iterative exploration by repeating two
stages. First, the model is updated using the newly sampled points
(model construction). Second, one new point is selected with its PPA
obtained for improving the model in the next iteration (incremental
sampling). In this way, the model will be maintained up-to-date
and accurate after sampling each new point.

3.2 Initial Sampling
The target of the initial sampling stage is to obtain a comprehensive
understanding about the distribution of PPAs by sampling a small
batch of configurations D𝑥 from the design space X. Under the
assumption that the Pareto optimal configurations are uniformly
distributed in X a priori, the objective of this stage can be consid-
ered as: select 𝑛 configurations, such that they are diverse and can
cover the whole design space as much as possible. This problem
has been extensively studied in the statistics literature as experi-
mental design [12]. In this work, we examine three representative
algorithms, and to our knowledge two of them have never been
studied in the microarchitecture DSE literature.

Maximin and minimax design. The objectives of maximin and
minimax design [11] are formulated respectively as

max
D𝑥

min
𝒙𝑖 ,𝒙 𝑗 ∈D𝑥 ,𝑖≠𝑗

| |𝒙𝑖 − 𝒙 𝑗 | |, (2)

min
D𝑥

max
𝒙∈X

min
𝒙𝑖 ∈D𝑥

| |𝒙 − 𝒙𝑖 | |. (3)

The maximin criterion maximizes the nearest neighbour distance
of D𝑥 . The minimax criterion minimizes the Hausdorff distance, a
metric indicating the dissimilarity of two sets, D𝑥 and X. We use
an exchange-based algorithm for finding D𝑥 that optimizes the
maximin or minimax criteria, elaborated in Algorithm 1.

2We omit 𝒗ref in the notation of Pareto hypervolume for brevity.
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Algorithm 1Maximin and minimax design
1: Initialize D𝑥 by iteratively selecting a new point furthest to the currently selected

point set
2: while the criterion keeps improving do
3: for each 𝒙𝑖 ∈ D𝑥 in random order do
4: Find 𝒙∗ ∈ X, s.t. replacing 𝒙𝑖 by 𝒙∗ in D𝑥 optimizes the criterion
5: Perform such replacement

Latin Hypercube design (LHD). Under the setting of a grid-like
space where each input variable has 𝑘 feasible values, the method
of LHD is to sample 𝑘 points, such that for each input variable 𝑖 and
feasible value 𝑗 , there is exactly one sample 𝒙 such that 𝑥 (𝑖 ) = 𝑗 . For
example, if the number of dimensions𝑚 = 2, there should be exactly
one sample in every row and column of the 2D grid. In our problem,
LHD is applied to the module space (Section 2). Since the number
of feasible values for each variable 𝑘 (𝑖 ) may not be the same, we
perform LHD with 𝑘 = max𝑖 𝑘 (𝑖 ) , and select the nearest feasible
neighbour of each sample. LHD has the following problems: (a)
there is a huge number of feasible LHD results for a given space; (b)
the number of LHD samples 𝑘 cannot be adjusted as it is an attribute
of the input space. To address these issues, we combine LHD with
the minimax criterion that enables generating a good subset of LHD
samples with an arbitrary size 𝑘′ (𝑘′ ≤ 𝑘). Specifically, a batch of
different LHD sample sets (say, 100×𝑘 samples) are first generated,
and all possible subsets of size 𝑘′ for each sample set are considered.
The best subset in terms of Equation (3) is selected among all such
subsets. We denote this method as minimax-resampled LHD.

Transductive experimental design (TED). TED [14] assumes that
the relation between the input and output space can be modeled
by a kernel regression on D𝑥 , and it finds a D𝑥 that minimizes the
variance of the prediction error on X. Hence, unlike the methods
introduced above whose optimization processes are only relevant
to the design space, the optimization objective of TED is in fact
in the target space3, which correlates closer with the objective of
our DSE problem. Thus, the performance of TED can be potentially
better than the methods introduced above, if the assumed model
describes the true distribution well (i.e., we have good prior knowl-
edge); otherwise, the performance of TED can be much worse, as
shown by the experiments in Section 3.3. To our knowledge, this
issue has been neglected in many previous design space exploration
works on EDA that utilize TED. For the implementation of TED,
we use the sequential design algorithm in [14].

Comparison. In order to quantitatively measure the performance
of these algorithms, we designed a metric indicating the coverage
of the sampled points in the design space. Specifically, the covered
volume of the sample setD𝑥 is estimated by placing𝑚-dimensional
balls 𝐵𝑚 centered at each sampled configuration:

𝑉 (D𝑥 ) = Vol

[( ⋃
𝒙𝑖 ∈D𝑥

𝐵𝑚 (𝒙𝑖 , 𝑟 )
) ⋂

box(X)
]
, (4)

where box(X) denotes the tight bounding hyper-rectangle of X,
and the radius 𝑟 is set as the radius of an𝑚-dimensional ball with
volume Vol(box(X))/|D𝑥 |. Monte Carlo methods are adopted for
computing 𝑉 (D𝑥 ). We conduct an experiment using the design

3Despite of this, the PPA data are not required for TED; see [14].
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space of the example dataset provided in the ICCAD’22 DSE contest
codebase (denoted as the “contest example dataset” in the following),
and the details about the design space are introduced in Section 4.1.
Results are shown in Figure 2. In particular, TED performs the
worst among all methods (even worse than random sampling for
some cases) in terms of this coverage metric. This is understandable
since the coverage is with regard to the design space, whereas the
objective of TED is formulated with regard to the target space.
For the other initialization methods, minimax-resampled LHD and
minimax obtain slightly higher coverage than maximin.

3.3 Model Construction
The objective of this stage is to construct a modelM describing the
relationship between the design space X and the target spaceY us-
ing the currently obtained configurations and PPAsD = (D𝑥 ,D𝑦),
in order to guide the selection of the next configuration. Appar-
ently, an accurate modeling can provide valuable information and
potential for the DSE algorithm to obtain high Pareto hypervolume.
The models of interests include:

Random forest (RF). RF [3] is a bagging ensemble method that
combines multiple regression (decision) trees as base models. Each
regression tree is fit with randomness (1) in selection of training
samples and (2) by ignoring a subset of input variables. The final
prediction value is the averaged prediction of all the base models.
RF has low prediction variance because of its bagging nature.

XGBoost (XGB). XGB [5] is a gradient boosting method that also
utilizes multiple regression trees. Different from RF, the regression
trees in XGB are constructed and combined one by one, according
to the prediction error (formulated as the gradient of loss w.r.t.
prediction) of the current model on the target value (𝒚). In other
words, the new regression tree refines the current model. XGB has
high generalization ability and is widely applied in practice.

Gaussian Process regression (GPR). In contrast to the other mod-
els introduced above, GPR is intrinsically able to quantify the un-
certainty of its predictions. Informally, GPR prediction can be re-
garded as interpolation and extrapolation using the training data,
and it is more “confident” about the predictions at the input loca-
tions where the training data are more densely sampled, as shown
in Figure 3. In GPR, the model function values 𝒇 at a set of in-
put points X = {𝒙𝑖 }𝑛𝑖=1 are treated as random variables, where
𝒇 = [𝑓 (𝒙1), . . . , 𝑓 (𝒙𝑛)]𝑇 . According to the definition of Gaussian
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Process (GP), the joint distribution of these random variables (GP
prior) follows a multivariate Gaussian distribution, specified as

𝒇 |X ∼ N(0,KXX), (5)

where (KXX)𝑖 𝑗 = 𝑘 (𝒙𝑖 , 𝒙 𝑗 ) and 𝑘 (·, ·) is the covariance/kernel func-
tion of the GP. Suppose we have a dataset (X,𝒚) where the target
observations 𝑦𝑖 = 𝑓 (𝒙𝑖 ) + 𝜀, and 𝜀 is a zero-mean Gaussian noise
with variance 𝜎2𝑛 . The predictive distribution of 𝑓∗ = 𝑓 (𝒙∗) at a new
point 𝒙∗ can then be derived from the joint prior of [𝒚, 𝑓∗]𝑇 :[

𝒚
𝑓∗

] ����X, 𝒙∗ ∼ N
(
0,

[
KXX + 𝜎2𝑛I KX𝒙∗

K𝒙∗X 𝑘 (𝒙∗, 𝒙∗)

] )
, (6)

𝑓∗ |X, 𝒙∗,𝒚 ∼ N(K𝒙∗X [KXX + 𝜎2𝑛I]−1𝒚, (7)

𝑘 (𝒙∗, 𝒙∗) − K𝒙∗X [KXX + 𝜎2𝑛I]−1KX𝒙∗ ) .
The mean and variance of the Gaussian in Equation (7) are the GPR
prediction and the quantified prediction uncertainty respectively.

There are many possible instantiations for the kernel function 𝑘 .
In this work, we focus on the radial basis function (RBF) 𝑘 (𝒙𝑎, 𝒙𝑏 ) =
exp(−||𝒙𝑎 − 𝒙𝑏 | |22/2𝜎

2), where 𝜎 is a hyper-parameter controlling
the length scale. The advantage of the RBF kernel is that it is the-
oretically a universal approximator [10] and thus has very strong
expressive power. Besides, RBF implies that the target values of in-
put points that are close to each other are highly correlated, which
is reasonable in architectural design since we expect the PPAs to be
smoothly distributed over the design space without abrupt changes.

Other machine learning models. We also looked into models in-
cluding linear regression, Support Vector Regression, AdaBoost and
Multi-layer Perceptron, but none of them performs well in terms
of modeling accuracy and maximizing the Pareto hypervolume, so
we do not include them in this work for further investigation.

Comparison. We perform a comprehensive experiment regarding
the prediction errors on the full design space of different models
when fit on different numbers of points generated by different ini-
tialization methods, using the contest example dataset. The results
are shown in Figure 4, where the reported error is the averaged
value over 50 trials with different random seeds. We adopt the RBF
kernel in TED following the previous work [9]. When comparing
different models, the performance of RF and GPR are close, and in
general GPR is better when the number of training points is small
(≤ 10), thanks to its Bayesian nature.

When comparing different initialization methods in Figure 4,
the results of TED with 𝜎 = 10 are the best, which indicates the
effectiveness of its prediction error formulation in the 𝑦-space. To
ensure TED truly works well, the underlying model assumption of
TED should be consistent with the real data distribution, which is
not always the case. To demonstrate this, the value of 𝜎 in the RBF
kernel of TED is adjusted and we can see the model’s prediction
error can increase dramatically, as shown in Figure 4f.

3.4 Incremental Sampling
The target of this stage is to sample the next configuration 𝒙∗ and
obtain its PPA following the guidance of the constructed model
M. It is intuitive to greedily select a configuration that maximizes
the objective of the DSE problem (i.e., Pareto hypervolume) under
the current modeling of the PPA distribution. Alternatively, we
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may select a configuration such that our knowledge about the
PPA distribution can be enriched by choosing this configuration,
which enables better modeling and creates chances that lead to
better samples in the future. These two high-level ideas are referred
to as exploitation and exploration respectively, and the trade-off
between them has been studied for a long time, especially in the
reinforcement learning literature. Intuitively, an effective concrete
sampling strategy needs to balance exploration and exploitation,
and we analyze a few strategies in the aspect of these two concepts.

Pure exploitation. The configuration 𝒙∗ is sampled such that its
predicted PPA increases the current Pareto hypervolume most, i.e.,
maximizing HV(P(D𝑦 ∪ {𝒚̂})), where 𝒚̂ = M(𝒙) is the predicted
PPA at an unsampled configuration 𝒙 . (xplt)

Pure exploration. A configuration 𝒙∗ with the largest uncertainty
is sampled. The uncertainty can be measured in various forms, and
here we focus on two representative instantiations: design space
uncertainty (xplr_cos) and target space uncertainty (xplr_var).
The design space uncertainty of a point 𝒙 is the sparseness of the
sampled configurationsD𝑥 in the neighbourhood of 𝒙 . We quantify
this value as the sum of cosine dissimilarities between 𝒙 and all
sampled configurations:

𝑈 (𝒙,D𝑥 ) =
∑︁

𝒙′∈D𝑥

(
1 − 𝒙 · 𝒙′

| |𝒙 | |2 | |𝒙′ | |2

) /
2. (8)

The target space uncertainty is related to the modeling. Some mod-
els have intrinsic prediction uncertainties, such as the variance of
the GPR predictive distribution (Equation 7). For models that are
unable to provide explicit prediction uncertainty (e.g., RF, XGB), we
adopt the disagreement-based method [7] that for multiple models
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of the same type but with different random seeds being fit, the
variance in their predicted values at 𝒙 is treated as the uncertainty.

Hybrid strategies. Theoretically, exploration and exploitation
should be balanced in order to achieve a better final result with
higher controllability, since pure exploration may fail to converge
and pure exploitation may fall into local optima. Here we consider
three approaches that combine our aforementioned pure strategies.

The first approach (wsm_xplr_xplt) considers both the exploita-
tionmetric (Pareto hypervolume) and the explorationmetric (cosine
dissimilarity or prediction variance), and then the configuration
with the maximum weighted sum of the two is selected. The second
approach (alt_xplr_xplt) simply alternates exploration and ex-
ploitation at a frequency of every 𝑘 iterations where we put 𝑘 = 5
in our experiments. In the third approach (suffixed by _frt), we
predict PPAs for all unsampled configurations and select a point
among those configurations whose PPAs are in-frontier (exploita-
tion), i.e., belong to P({𝒚̂ : 𝒚̂ = M(𝒙), 𝒙 ∈ X \D𝑥 }). The selection
strategy of an in-frontier configuration includes pure exploration,
and the above two hybrid strategies.

Expected Hypervolume Improvement (EHVI). EHVI is an approach
for jointly considering exploration and exploitation in which a
sample with the maximum expected Pareto hypervolume increment
is selected. The EHVI of sampling 𝒙 is specified as

EHVI(𝒚 |D) = E𝒚 |D [HV(P(D𝑦 ∪ {𝒚})) − HV(P(D𝑦))] (9)

=

∫
R𝑡

HV(P(D𝑦 ∪ {𝒚}))𝑝 (𝒚 |D)d𝒚 − HV(P(D𝑦)),

where 𝑝 (𝒚 |D) is the pdf of the GP predictive distribution at 𝒙
(Equation 7). Note that 𝒚 in (9) is a random variable modeled by
GP prediction, but the predicted value 𝒚̂ is not, which makes EHVI
different from the pure exploitation strategy though they appear to
be similar. We use Monte Carlo methods for computing EHVI [6].

Comparison. Figure 5 shows the experimental results comparing
different sampling strategies, where ten DSE flows are executed
with different random seeds for each strategy and their averaged
results are shown in one curve. From the modeling error results,
we have the following observations. The first one is intuitive: the
broader extent of exploration, the better modeling accuracy, which

can be seen from the fact that the pure exploration strategies per-
form the best, and the in-frontier strategies (with _frt suffixes)
have larger errors than their non-in-frontier counterparts. Second,
there are fluctuations in modeling accuracy for strategies with
exploitation. This is because the selected point with maximum pre-
dicted hypervolume may be located very close to a previous sample
in the design space, which leads to dense clusters of samples and
the overfitting of the GPR model that in turn causes high prediction
errors in the sparsely sampled regions.

For the Pareto hypervolume results, it is interesting that the
pure exploration using the prediction uncertainty (xplr_var) per-
forms the best, rather than a hybrid strategy with well-balanced
exploration and exploitation. The reason could be that the num-
ber of sampled points is too few compared with the number of
feasible configurations, such that the design space is not covered
enough and many closer-to-optimal points are unrevealed. In this
situation, it would be better to keep on discovering. Notably, in
Figure 5 the hypervolume of the weighted-sum hybrid strategy
(wsm_xplr_xplt) continues to increase when there are 400-500
samples, but meanwhile the other strategies are nearly saturated.
Hence, exploitation is likely to become important when we have
more points sampled, but this is not investigated in our experiments
due to high computational complexity.

In particular, although EHVI is supported by a solid theoretical
background, it fails to outperform other heuristic-based strategies in
terms of both modeling accuracy and obtaining large hypervolume.
Besides, the heuristic-based strategies are more flexible than EHVI
in terms of exploration and exploitation trade-off.

4 FULL-FLOW EVALUATIONS
In this section, we perform the third step of our methodology.

4.1 Design Space of the Contest Environments
The design space for the BOOM [4] microarchitecture in the IC-
CAD’22 DSE contest [8] evaluation environments (including the
example dataset and an online platform [1]) is shown in Table 1.
There are 9 modules, each of which consists of one or more compo-
nents, and each component has a list of candidate values. There are
constraints over these values among different components inside a
module, i.e., some of the combinations are feasible and some are
not, which are not shown here. The example dataset and the online
evaluation platform data consist of a subset of the feasible values
for each component in Table 1 respectively. The number of points
in the example dataset design space is approximately 16k. Note that
the design space and PPAs of the online data are hidden from us.

4.2 Comparison of Stage-wise Algorithms
We test different combinations of stage-wise algorithmic compo-
nents on the contest example dataset. Since the VLSI verification
flows for processors can be very time-consuming, we set a rela-
tively small budget for the total number of samples to be explored
as 54, in which 10 samples are retrieved during initialization and
the rest 44 points are obtained along the repetitive model construc-
tion and incremental sampling steps. All possible choices for the
initialization methods, models and incremental sampling strategies
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Table 1: Microarchitecture Design Space

Module Component Candidate Values

Fetch FetchWidth 4, 8

Decoder DecodeWidth 1, 2, 3, 4, 5

ISU

MEM_INST.DispatchWidth 1, 2, 3, 4, 5
MEM_INST.IssueWidth 1, 2
MEM_INST.NumEntries 6, 8, 10, 12, 14, 16, 20, 22, 24, 26, 28
INT_INST.DispatchWidth 1, 2, 3, 4, 5
INT_INST.IssueWidth 1, 2, 3, 4, 5
INT_INST.NumEntries 6, 8, 12, 20, 24, 32, 36, 40, 44, 48
FP_INST.DispatchWidth 1, 2, 3, 4, 5
FP_INST.IssueWidth 1, 2, 3, 4, 5
FP_INST.NumEntries 6, 8, 12, 16, 20, 24, 28, 32, 36, 40

IFU
BranchTag 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26

FetchBufferEntries 6, 8, 12, 14, 16, 20, 21, 24, 30, 32, 35, 36, 40, 45
FetchTargetQueue 14, 16, 20, 30, 32, 36, 40, 44, 48, 50

ROB ROBEntries 30, 32, 34, 36, 60, 64, 72,
90, 96, 108, 120, 128, 130, 132, 136, 140

PRF
INTPhysRegisters 42, 52, 62, 70, 80, 90, 100, 110, 118, 128, 138, 146
FPPhysRegisters 38, 48, 54, 58, 64, 74, 86, 96, 106, 118, 128, 138, 146

LSU
LDQEntries 6, 8, 12, 16, 20, 24, 28, 32, 36
STQEntries 6, 8, 12, 16, 20, 24, 28, 32, 36

I-Cache/MMU

Sets 32, 64
Ways 1, 4, 8

I-TLBSets 1, 2
I-TLBWays 16, 32

D-Cache/MMU

Sets 64
Ways 2, 4, 8

ReplacementPolicy 0, 1
MSHR 2, 4, 8

D-TLBSets 1, 2
D-TLBWays 8, 32
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Figure 6: Averaged Pareto hypervolumes along DSE flows.

investigated in the stage-wise experiments are included here, ex-
cept the XGB model due to its high prediction error shown in the
Section 3.3 experiments. The results are shown in Figure 6, where
each curve shows the averaged Pareto hypervolumes of all the
experiments with the corresponding algorithm instantiation. For
example, each curve in Figure 6a is the averaged result over 2 mod-
els × 10 sampling strategies × 10 random seeds = 200 experiments.
We can observe that on average, minimax, GPR and xplr_var_frt
achieve advanced performance in their corresponding tasks, which
are consistent with our stage-wise studies.

Table 2: Results of our DSE flows compared with other works.

DSE flow Ex. Dataset Online Platform
HV HV Norm. time†

DAC’13 [9] 5.411 - -
DAC’16 [7] 6.098 - -

ICCAD’21 [2] 6.136 - -
Contest 1st Place - 7.900 0.93
Contest 2nd Place - 7.782 1.01
Contest 3rd Place - 7.820 1.30

minimax + GPR + xplr_var_frt 6.110 7.916 1.00
minimax + GPR + xplr_var 6.158 7.748 1.13
TED + GPR + xplr_var_frt 6.513 7.898 1.02

† Including the time of VLSI verification flows and DSE algorithm.

4.3 Final Flow Formulation
We now select high-performace DSE flows based on our previous
experiments and stage-wise theoretical analyses, which serve as the
product of our comprehensive study. From the results in Section 4.2,
we obtain one candidate flow of minimax + GPR + xplr_var_frt.
Besides, pure exploration (xplr_var) shows superiority in the in-
cremental sampling experiments (with minimax + GPR), while TED
is very effective when having a proper 𝜎 as analyzed in Section 3.3,
so we also consider the following two DSE flows: minimax + GPR +
xplr_var, and TED + GPR + xplr_var_frt.

4.4 Comparison with Other Works
We evaluate our solutions on the ICCAD’22 DSE contest example
dataset and the contest online evaluation platform [1], compared
with three previous published works, as well as the results of the
contest top-3 teams retrieved from the online platform ranking.
DAC’16 [7] utilized orthogonal array for initialization, but it is
computationally intractable on the BOOM design space, so we alter-
natively use LHD for DAC’16 since orthogonal array is known to be
an extension of LHD [12]. For all the experiments in both evaluation
environments, we use the same number of total and initialization
samples as in Section 4.2. The results are shown in Table 2. All of
our three flows outperform DAC’13 and DAC’16, among which two
flows surpass the state-of-the-art DSE framework ICCAD’21 [2] on
the contest example dataset. For the online platform evaluation, two
of our flows obtain higher or similar Pareto hypervolume compared
with the contest first place. The number of samples used by the
contestants on the platform is unknown to us, so their runtimes
are provided in Table 2 as rough references. Since the algorithm
runtime is negligible compared to the VLSI flow time, the number of
samples used in the first and second place flows should be similar to
ours. To conclude, the promising results indicate the effectiveness
of our obtained DSE flows and the DSE design methodology.

5 CONCLUSION
In this paper, we proposed a novel methodology for guiding the
design of DSE frameworks. This design methodology starts with
obtaining a DSE flow skeleton that consists of different stages,
followed by theoretical and experimental analyses of possible algo-
rithmic instantiations for each stage systematically. We conducted
a case study on the BOOMmicroarchitecture following the method-
ology and obtained novel DSE flows based on the comprehensive
stage-wise studies, which achieved state-of-the-art performances in
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terms of maximizing the Pareto hypervolume in the ICCAD’22 DSE
contest evaluation environments. Our methodology can be applied
to general DSE problems including microarchitecture design.
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