. J

Simulation-based Parallel Sweeping:
/ A New Perspective on
Combinational Equivalence Checking

N
Tianji Liu and Evangeline F.Y. Young —

Department of CSE, CUHK

G |

TO SYSTEMS

SPONSORED BY GE[W)A

(__ The Chinese University of Hong Kong

Outline

« Background & Motivation
« Simulation-based CEC Engine

* Massively Parallel Exhaustive Simulation
* Local Function Checking
* Qverall Flow

* Experimental Results
e Summary

¢

Background &

Motivation

¢

TO SYSTEMS

SPONSORED BY GEEBA

Combinational Equivalence Checking (CEC)

* Prove the equivalence of two netlists implementing the same circuit
« CEC is co-NP-complete: no universally efficient algorithm
» Applications: verification, logic synthesis, functional ECO

f . e fuptimi:('t/ f = f(;p;‘.‘ﬂ:i:('d

equivalent ?

COMmMmon CEC

structure >

(. shared input variables shared input variables

Source: Armin Biere, “SAT in Formal Hardware Verification”, SAT 05 talk

CEC by Sweeping

» Miter: sharing Pls of the two circuits, combine POs with XORs
* Two circuits are equivalent <=> miter is const-0

« Assumption: there are internal equivalent nodes in the miter
* Usually true if one circuit is the optimized version of another (i.e., during synthesis)

« Sweeping
* Gradually reduce the miter by proving and merging internal equivalent nodes
— Easier to prove the POs
* Use a formal method (e.g., BDD, SAT) to perform the proof

¢

CEC Solutions: Past & Present

» Early years: binary decision diagrams (BDDs)
« Not scalable to large circuits

* Recent years: Boolean satisfiability (SAT)

* Huge improvements of SAT solving performance (clause learning, inprocessing, ...)

« SAT is not always optimal for CEC (due to co-NP-completeness)
« Example: computer algebra methods for arithmetic circuits

« Conclusion: new solutions of CEC are constantly needed

¢

“The Bitter Lesson” from Al Community

* Richard Sutton (2024 Turing Award recipient):

» “The biggest lesson that can be read from 70 years of Al research is that general methods
that leverage computation are ultimately the most effective.”

« Explanation: the methods that are more general and exploit massive computational power
usually outperform those relying on domain knowledge.

* Will there be a similar case in CEC?

Overview of Our CEC Approach

 General method: use exhaustive simulation to prove equivalences

» Massive computational power: parallel computation exploiting GPUs

A local function checking scheme for reducing time complexity

exhaustive simulator L,

win merging

¢

cut generator

CEX manager

>

partial simulator

$

=P

miter manager

EC manager

logic merging &

miter reduction

NVIDIA.
CUDA

Massively Parallel

Exhaustive Simulation

¢

TO SYSTEMS

SPONSORED BY GEEBA

Exhaustive Simulation

» Objective of Exhaustive Simulator
« Check equivalence of many candidate node pairs

* For each pair, enumerate all possible patterns at inputs, compute response at the two nodes

* Three dimensions of parallelism
1. (windows)

2.
3.
multi-
/é window /Q
[\ \
multi- g
ARTRR A

Pall IXNZANCFXEX

10

Window Merging

node pair

windows fq ﬂq fq fq merge ’q fq fq fq
* One window for simulating multiple pairs P
« Reduce simulation effort and #windows input ({ (B J) (g }) ({ J) (B (B }5

nodes

* Merge windows with high overlaps

« Approach
« Sort the windows in lexicographical order of input nodes
 Cluster neighboring windows into one, with a limit on max #inputs
« Example: inputs , -> , (max #inputs = 3)

¢

11

Local Function

Checking

¢

TO SYSTEMS

SPONSORED BY GEEBA

Local Function Checking

» Basic idea

« Check the equivalence of two nodes’ functions in terms of a common cut (input = cut leaves)

 Restrict the complexity of exhaustive simulation (exponential in input size)
* Properties

« EQ local function = EQ pair

* NEQ local function # NEQ pair

* NEQ local function, EQ pair =

patterns leading to NEQ are satisfiability don’t cares (SDCs)

* Main objective: avoid SDCs at the cut nodes; how?

« Check multiple cuts for a node pair

« Ensure the “quality” of the cuts

local check window
input = {f,g,h}

¢

13

Cut Generation for Node Pairs

« Cut enumeration: generate C cuts P(n) (size < k) for every single node
E(n) = {u Uv : u€P(ng) VU {{no}},v € P(n;) U {{nl}}, luuv| < k}

P(n) = the best C cutsin E(n)

 Level-wise parallel computation, using the method of [1]

« Generate common cuts for a node pair n,m

Pnnm)={uuUv : uePn),veP(m)|luvuv| <k}

Source: [1]

[1] Tianji Liu, Lei Chen, Xing Li, Mingxuan Yuan,
Evangeline F.Y. Young, "FineMap: A Fine-grained
GPU-parallel LUT Mapping Engine", ASP-DAC, 14
2024.

Ensuring Cut Quality

* How to select the best C cuts from many cuts?

Pass Main Metric Tie-breaker Metric 1 Tie-breaker Metric 2
1 large avg. fanout small cut size small avg. level
2 small avg. level small cut size large avg. fanout
3 large avg. level small cut size large avg. fanout

* Multiple passes with different selection metrics to ensure high diversity of cuts

« High usability of common cuts: encourage similar cuts of two nodes in a pair

¢

15

Local Function Checking Approach

* In short: on-the-fly exhaustive simulation along with the cut generation process
A constant-sized common cut buffer
 Collect common cuts into the buffer by level-wise parallel cut enumeration
* Once the buffer is full, launch a batch of exhaustive simulation
 Clear the buffer and continue the cut enumeration process

16

Overall CEC Flow

¢

TO SYSTEMS

SPONSORED BY GEEBA

Overall CEC Flow

* Three types of phases

« PO checking: check the global functions of simulatable (#support <= a constant) PO pairs
 Global function checking: check the global functions of all simulatable internal node pairs
 (Until saturation) local function checking: check the local functions of all internal node pairs

« |[f undecided in the end (i.e., miter not empty), call the CEC engine in ABC

empty Y
miter?

phase

P

EQ

phase

G

global func. checking: simulatable POs

¥

miter reduction

Y empty
miter?

N

N

+=
local func. checking: all pairs

'

EC init by partial random simulation

miter reduction & EC update

1

global func. checking: simulatable pairs
w/ CEX collection

v

CEX simulation & EC update

v

miter reduction & EC update

L

empty Y
miter?

N

N

Y

UNDEC

EQ

phase

—bEQ

Experimental Results

¢

TO SYSTEMS

SPONSORED BY GEEBA

Setup

» Developed on top of CULS:
« ~8000 lines of code

« Hardware: NVIDIA RTX A6000 GPU, 48 GB DRAM
» Benchmarks: EPFL Combinational Suite and IWLS 2005

 Miter preparation: optimized circuits generated by ABC resyn2
« Use ABC checker for handling undecided case: &cec -C 100000

« Compare with
« Standalone ABC checker
« Commercial checker: Cadence Conformal LEC (16 CPU threads)

¢

20

https://github.com/cuhk-eda/CULS

Experimental Results

B L Statistics ABC g&cec Cfm (16 CPUs) Ours (GPU+ABC) Speed-up
enchmarks . Runtime (s) Runtime (s)

#PIs™ #POs" #Nodest Levelst)) GPU (s) Reduced (%) ABC (s) Total (s) vs. ABC vs. Cfm
hyp_7xd 32768 16384 45881216 24801 7859.26 406002 4616.56 40.2 418.48 5035.04 1.56x 80.64x
log2_10xd 32768 32768 62072832 444 >4 months¥ 118392 119633.18 100.0 - 119633.18 88.11x 0.99 x
multiplier_10xd 131072 131072 52600832 274 2370.52 3213 159.54 100.0 - 159.54 14.86x 20.14x
sqrt_10xd 131072 65536 44978176 5058 20640.56 30605 52.29 0.7 20623.24 20675.53 1.00x 1.48 %
square_10xd 65536 131072 33442816 250 1021.40 2710 144.35 100.0 - 144.35 7.08x 18.77x%
voter_10xd 1025024 1024 21862400 70 62610.44 1166 54.20 43.5 35611.63 35665.83 1.76 % 0.03x
sin_10xd 24576 25600 10689536 225 2499.28 2081 78.88 100.0 - 78.88 31.68x 26.38x
ac97_ctrl_10xd 2307072 2299904 22685696 12 248.57 1563 97.51 08.9 22.43 119.94 2.07x 13.03x
vga_led_5xd 549248 549856 6337536 24 05.82 317 18.51 20.1 81.95 100.46 0.95x 3.16x
Geomean 4.89x 4.88 %

 Independently verifies 4 out of 9 cases (i.e., w/o ABC)
« Up to 88.11x speed-up vs. ABC (4 months -> 1.4 days)

 When combined with ABC, averaged 4.88x speed-up vs. Conformal LEC

¢

21

Summary

¢

TO SYSTEMS

SPONSORED BY GEEBA

Summary

* A new perspective of checking equivalences using parallel exhaustive simulation
 Local function checking scheme for reducing checking effort
- Efficient parallel algorithms for exhaustive simulation and local function checking

* 4.89x and 4.88x averaged acceleration over standalone ABC checker and
Conformal LEC

23

	Default Section
	Slide 1: Simulation-based Parallel Sweeping: A New Perspective on Combinational Equivalence Checking
	Slide 2: Outline
	Slide 3: Background & Motivation
	Slide 4: Combinational Equivalence Checking (CEC)
	Slide 5: CEC by Sweeping
	Slide 6: CEC Solutions: Past & Present
	Slide 7: “The Bitter Lesson” from AI Community
	Slide 8: Overview of Our CEC Approach
	Slide 9: Massively Parallel Exhaustive Simulation
	Slide 10: Exhaustive Simulation
	Slide 11: Window Merging
	Slide 12: Local Function Checking
	Slide 13: Local Function Checking
	Slide 14: Cut Generation for Node Pairs
	Slide 15: Ensuring Cut Quality
	Slide 16: Local Function Checking Approach
	Slide 17: Overall CEC Flow
	Slide 18: Overall CEC Flow
	Slide 19: Experimental Results
	Slide 20: Setup
	Slide 21: Experimental Results
	Slide 22: Summary
	Slide 23: Summary

