
Simulation-based Parallel Sweeping:
A New Perspective on

Combinational Equivalence Checking

Tianji Liu and Evangeline F.Y. Young

Department of CSE, CUHK



Outline

• Background & Motivation

• Simulation-based CEC Engine
• Massively Parallel Exhaustive Simulation

• Local Function Checking

• Overall Flow

• Experimental Results

• Summary

2



Background & 
Motivation



Combinational Equivalence Checking (CEC)

• Prove the equivalence of two netlists implementing the same circuit

• CEC is co-NP-complete: no universally efficient algorithm

• Applications: verification, logic synthesis, functional ECO

4
Source: Armin Biere, “SAT in Formal Hardware Verification”, SAT’05 talk

CEC



CEC by Sweeping

• Miter: sharing PIs of the two circuits, combine POs with XORs
• Two circuits are equivalent <=> miter is const-0

• Assumption: there are internal equivalent nodes in the miter
• Usually true if one circuit is the optimized version of another (i.e., during synthesis)

• Sweeping
• Gradually reduce the miter by proving and merging internal equivalent nodes

→Easier to prove the POs

• Use a formal method (e.g., BDD, SAT) to perform the proof

5



CEC Solutions: Past & Present

• Early years: binary decision diagrams (BDDs)
• Not scalable to large circuits

• Recent years: Boolean satisfiability (SAT)
• Huge improvements of SAT solving performance (clause learning, inprocessing, …)

• SAT is not always optimal for CEC (due to co-NP-completeness)
• Example: computer algebra methods for arithmetic circuits

• Conclusion: new solutions of CEC are constantly needed

6



“The Bitter Lesson” from AI Community

• Richard Sutton (2024 Turing Award recipient):
• “The biggest lesson that can be read from 70 years of AI research is that general methods 

that leverage computation are ultimately the most effective.”

• Explanation: the methods that are more general and exploit massive computational power

usually outperform those relying on domain knowledge.

• Will there be a similar case in CEC?

7



Overview of Our CEC Approach

• General method: use exhaustive simulation to prove equivalences

• Massive computational power: parallel computation exploiting GPUs

• A local function checking scheme for reducing time complexity

8



Massively Parallel 
Exhaustive Simulation



Exhaustive Simulation

• Objective of Exhaustive Simulator
• Check equivalence of many candidate node pairs

• For each pair, enumerate all possible patterns at inputs, compute response at the two nodes

• Three dimensions of parallelism
1. Parallel simulation of different pairs (windows)

2. Level-wise parallel node simulation

3. Parallel multi-word simulation for a node

10



Window Merging

• Merge windows with high overlaps
• One window for simulating multiple pairs

• Reduce simulation effort and #windows

• Approach
• Sort the windows in lexicographical order of input nodes

• Cluster neighboring windows into one, with a limit on max #inputs

• Example: inputs {a, b}, {a, b}, {a, b, c}, {a, e}, {a, f} -> {a, b, c}, {a, e, f} (max #inputs = 3)

11



Local Function 
Checking



Local Function Checking

• Basic idea
• Check the equivalence of two nodes’ functions in terms of a common cut (input = cut leaves)

• Restrict the complexity of exhaustive simulation (exponential in input size)

• Properties
• EQ local function ⇒ EQ pair

• NEQ local function ⇏ NEQ pair

• NEQ local function, EQ pair ⇒

patterns leading to NEQ are satisfiability don’t cares (SDCs)

• Main objective: avoid SDCs at the cut nodes; how?
• Check multiple cuts for a node pair

• Ensure the “quality” of the cuts

13



Cut Generation for Node Pairs

• Cut enumeration: generate 𝐶 cuts 𝑃 𝑛 (size < 𝑘) for every single node

𝐸 𝑛 = 𝑢 ∪ 𝑣 ∶ 𝑢 ∈ 𝑃 𝑛0 ∪ 𝑛0 , 𝑣 ∈ 𝑃 𝑛1 ∪ 𝑛1 , 𝑢 ∪ 𝑣 ≤ 𝑘

𝑃 𝑛 = the best 𝐶 cuts in 𝐸(𝑛)

• Level-wise parallel computation, using the method of [1]

• Generate common cuts for a node pair 𝑛,𝑚
𝑃 𝑛,𝑚 = {𝑢 ∪ 𝑣 ∶ 𝑢 ∈ 𝑃 𝑛 , 𝑣 ∈ 𝑃 𝑚 , 𝑢 ∪ 𝑣 ≤ 𝑘}

14Source: [1]

[1] Tianji Liu, Lei Chen, Xing Li, Mingxuan Yuan, 

Evangeline F.Y. Young, "FineMap: A Fine-grained 

GPU-parallel LUT Mapping Engine", ASP-DAC, 

2024.



Ensuring Cut Quality

• How to select the best 𝐶 cuts from many cuts?

• Multiple passes with different selection metrics to ensure high diversity of cuts

• High usability of common cuts: encourage similar cuts of two nodes in a pair

15

Pass Main Metric Tie-breaker Metric 1 Tie-breaker Metric 2

1 large avg. fanout small cut size small avg. level

2 small avg. level small cut size large avg. fanout

3 large avg. level small cut size large avg. fanout



Local Function Checking Approach

• In short: on-the-fly exhaustive simulation along with the cut generation process
• A constant-sized common cut buffer

• Collect common cuts into the buffer by level-wise parallel cut enumeration

• Once the buffer is full, launch a batch of exhaustive simulation

• Clear the buffer and continue the cut enumeration process

16



Overall CEC Flow



Overall CEC Flow

• Three types of phases
• PO checking: check the global functions of simulatable (#support <= a constant) PO pairs

• Global function checking: check the global functions of all simulatable internal node pairs

• (Until saturation) local function checking: check the local functions of all internal node pairs

• If undecided in the end (i.e., miter not empty), call the CEC engine in ABC

18



Experimental Results



Setup

• Developed on top of CULS: https://github.com/cuhk-eda/CULS
• ~8000 lines of code

• Hardware: NVIDIA RTX A6000 GPU, 48 GB DRAM

• Benchmarks: EPFL Combinational Suite and IWLS 2005
• Miter preparation: optimized circuits generated by ABC resyn2

• Use ABC checker for handling undecided case: &cec -C 100000

• Compare with
• Standalone ABC checker

• Commercial checker: Cadence Conformal LEC (16 CPU threads)

20

https://github.com/cuhk-eda/CULS


Experimental Results

• Independently verifies 4 out of 9 cases (i.e., w/o ABC)
• Up to 88.11x speed-up vs. ABC (4 months -> 1.4 days)

• When combined with ABC, averaged 4.88x speed-up vs. Conformal LEC

21



Summary



Summary

• A new perspective of checking equivalences using parallel exhaustive simulation

• Local function checking scheme for reducing checking effort

• Efficient parallel algorithms for exhaustive simulation and local function checking

• 4.89x and 4.88x averaged acceleration over standalone ABC checker and 

Conformal LEC

23


	Default Section
	Slide 1: Simulation-based Parallel Sweeping: A New Perspective on Combinational Equivalence Checking
	Slide 2: Outline
	Slide 3: Background & Motivation
	Slide 4: Combinational Equivalence Checking (CEC)
	Slide 5: CEC by Sweeping
	Slide 6: CEC Solutions: Past & Present
	Slide 7: “The Bitter Lesson” from AI Community
	Slide 8: Overview of Our CEC Approach
	Slide 9: Massively Parallel Exhaustive Simulation
	Slide 10: Exhaustive Simulation
	Slide 11: Window Merging
	Slide 12: Local Function Checking
	Slide 13: Local Function Checking
	Slide 14: Cut Generation for Node Pairs
	Slide 15: Ensuring Cut Quality
	Slide 16: Local Function Checking Approach
	Slide 17: Overall CEC Flow
	Slide 18: Overall CEC Flow
	Slide 19: Experimental Results
	Slide 20: Setup
	Slide 21: Experimental Results
	Slide 22: Summary
	Slide 23: Summary


