
Simulation-based Parallel Sweeping:
A New Perspective on Combinational Equivalence Checking

Tianji Liu
CSE Department, CUHK

tjliu@cse.cuhk.edu.hk

Evangeline F.Y. Young
CSE Department, CUHK
fyyoung@cse.cuhk.edu.hk

Abstract—Combinational equivalence checking (CEC) is a fundamental
task in the realization of digital designs which is unlikely to have
universally efficient algorithms due to its co-NP-completeness. Recent
researches of CEC have been focusing on SAT sweeping. This paper
provides a new perspective other than SAT for tackling CEC, namely
exhaustive simulation, and presents a simulation-based CEC engine
constructed with fast GPU-parallel algorithms. The proposed engine can
solve 4 out of the 9 large cases in the experiments on its own, with
up to 88.11× speed-up compared with the checker in ABC. Moreover,
a combination of the proposed engine with the ABC checker achieves
averaged accelerations of 4.89× and 4.88× over the standalone ABC
checker and a commercial checker, respectively.

I. INTRODUCTION

Combinational equivalence checking (CEC) is one of the most
important and fundamental problems in the realization flow of modern
digital designs, in which the objective is to prove the functional
equivalence of two netlists that implement the same combinational
circuit differently. Besides logic verification [1], CEC approaches
also have a wide range of applications in the areas including logic
synthesis [2], [3] and functional ECO [4].

Many tasks in EDA can be formulated as optimization problems
that aim to reduce certain costs, e.g., area and delay reduction in
logic optimization and technology mapping, and wirelength reduction
in placement and routing, which enables the use of approximate
and heuristic approaches that run in polynomial time, making them
scalable to large designs. In contrast, CEC requires an exact answer
of whether two circuits are equivalent, i.e., the problem needs to be
tackled directly without any approximation, and it is thus much more
challenging than the aforementioned tasks considering the complexity
of CEC as well as the increasing scale of modern designs.

Since CEC is co-NP-complete, efficient verification of all kinds of
designs using currently developed approaches is essentially infeasible.
Binary decision diagram (BDD) [5], [6] had been a common method
for CEC in the early years, but was gradually replaced by Boolean
satisfiability (SAT) solving [7], [8] due to the excessive memory
consumption of BDD which impedes its application to large designs.
Today, SAT has become the de facto core technique in CEC because
of the noticeable performance improvement in SAT solving over
the past two decades [9]–[11]. Nevertheless, it has been argued
that SAT-based methods are not as performant as other approaches
for certain types of designs, e.g., computer algebra methods for
arithmetic circuits [12]. This implies that the demand for novel and
fast CEC approaches will never diminish, as long as new and larger
sized designs continue to emerge.

In this paper, we present a new perspective on tackling CEC,
namely utilizing exhaustive simulation for proving functional equiv-
alences. A key advantage of exhaustive simulation over SAT is that
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it is friendly to parallelization, and we will demonstrate in this paper
that exhaustive simulation can be performed efficiently on GPUs,
which are powerful massively parallel processors that have shown
promising results in logic synthesis applications [13], [14]. When
proving difficult cases, however, parallel exhaustive simulation may
still be intractable due to its intrinsic exponential complexity. To
address this issue, we introduce a local function checking scheme for
restricting the computational effort of checking difficult cases, and the
effectiveness of checking can still be ensured by delicately designed
heuristics. We propose and implement fast GPU-parallel algorithms
for exhaustive simulation, local function checking and other auxiliary
procedures for CEC, which are combined together as a simulation-
based CEC engine with high overall performance.

The simulation-based CEC engine is capable of independently
proving 4 out of the 9 large circuits in the experiments, with up to
88.11× acceleration compared to the SAT-based equivalence checker
in ABC [15]. When combined with the ABC checker for handling the
undecided cases, the integrated approach obtains 4.89× and 4.88×
speed-up on average compared to the standalone ABC checker and
a commercial verification tool, respectively.

II. PRELIMINARIES

A. Background

A Boolean network is a directed acyclic graph (DAG) that models
a combinational circuit where nodes stand for logic operations and
edges represent wires between the nodes. The primary inputs (PIs)
and primary outputs (POs) of a Boolean network are the sources
and the sinks of the DAG. The direct predecessors (resp. direct
successors) of a node are called the fanins (resp. fanouts) of the
node. The predecessors (resp. successors) of a node are called the
transitive fanins (TFIs) (resp. transitive fanouts, TFOs) of the node.
The (structural) support of a node denotes the set of PIs that are TFIs
of the node. The function of a node expressed in terms of its support
is the global function of the node. The level of a node is the length
of a longest path from any PI to the node, which can be computed
recursively as the maximum level of the node’s fanins plus one. The
level of the network is the largest level of its POs.

A cut cn of a node n is a set of nodes such that any path from
a PI to n passes at least one node in the set, and n is the root of
cn. The trivial cut of n is defined as {n}. The function of a node
in terms of its cut nodes is the local function of the node. The logic
cone of a node n (associated with a cut cn) contains the intersection
of the TFIs of n with the TFOs of cn, and n itself.

An And-Inverter Graph (AIG) [16] is a Boolean network in which
nodes are two-input AND gates and signals (edges) can be optionally
inverted. Because of its compactness and flexibility, AIG has become
one of the most common circuit representations in modern logic
synthesis and verification tools such as ABC [15]. In this work, we
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also focus on the verification of AIGs but the proposed methods can
be applied to any kind of circuit representation.

The truth table of a k-input Boolean function is a bit string
bl−1 . . . b0 of length l = 2k, in which a bit bi ∈ {0, 1} is the function
value under the assignment of the k inputs (a0, . . . , ak−1) that satis-
fies 2k−1 ·ak−1 + · · ·+20 ·a0 = i. Essentially, a truth table consists
of the function values under all possible input assignments1. We
denote the truth tables of projection functions fi(x0, . . . , xk−1) = xi

as projection truth tables, which serve as the truth tables of inputs
when computing the truth table of a node in a network. For instance,
when k = 3, the projection truth tables of f0, f1, f2 are 10101010,
11001100, 11110000.

The (internal) satisfiability don’t cares (SDCs) of a node in a
Boolean network are the patterns at a cut of the node that will never
occur. For example, in the network with nodes n1 = x+y, n2 = yz
and n3 = n1n2, n3 has SDCs of {(n1 = 0, n2 = 1)}. If a node n has
SDCs, the local function values of n under the SDC assignments can
be changed without affecting the global function of n. It is believed
that SDCs are mainly due to reconvergent paths (different paths with
the same start and end) in the TFI structure of the cut [17], [18].

B. Sweeping

In CEC, a miter [19] circuit is constructed by sharing the corre-
sponding PI pairs of the two circuits being compared, and combining
the corresponding PO pairs using XOR gates which are treated as
the POs of the miter. Then, the problem of checking whether the two
circuits are equivalent becomes checking whether all the POs of the
miter are constant zeros.

A common and effective framework for CEC is sweeping [6],
[16]. The basic idea of sweeping is to identify equivalent pairs of
internal nodes in the miter and merge their logic, so the miter can
be gradually reduced, making it easier to prove the POs of the
miter. A fast (partial) simulation procedure [16] is performed in the
beginning of sweeping, which computes the partial truth tables of
all the nodes using simulation patterns assigned to the PIs (usually
randomly generated), and clusters the nodes with the same partial
truth table into an equivalence class (EC). This reduces the number
of candidate node pairs that need formal checking, since any pair
of equivalent nodes must reside in the same class. A usual way
to generate candidate pairs is to take the representative of a class
(defined as the node with the minimum id in the class) and match
it with the non-representatives in the class, so a class of N nodes
produces N − 1 pairs. The equivalence checking of candidate pairs
is performed using a formal method, e.g., BDD [6] or SAT [8].

Recent researches mainly focus on improving the SAT sweeping
framework. In [3], [20], [21], different methods are proposed for
generating high-quality simulation patterns to reduce SAT calls. [21],
[22] introduce a customized SAT solver with engineering efforts
tailored for SAT sweeping. There have also been works on accel-
erating SAT sweeping via parallelization. [23] describes a method
for concurrently executing SAT checks for multiple candidate node
pairs. [24] develops a hybrid CPU-GPU framework in which GPU
performs simulation and local matching of candidate pairs, and the
pairs undetermined in local matching are further checked by SAT
on CPU. The proposed CEC engine drastically differs from these
methods in that it relies on exhaustive simulation rather than SAT
for proving equivalent nodes.

1We also use the term patterns for input assignments in this paper.
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Fig. 1. The structure of the simulation-based CEC engine. The core modules
are highlighted in blue. Arrows indicate interactions between modules.

III. SIMULATION-BASED CEC ENGINE

This section introduces the simulation-based CEC engine. An
overview of the CEC engine is first provided in Section III-A, fol-
lowed by two subsections elaborating on the exhaustive simulator and
local function checking, which are core components of the engine.
Finally, the overall flow of the engine is presented in Section III-D.

A. Overview of Simulation-based CEC Engine

The simulation-based CEC engine consists of five modules, as
depicted in Figure 1, in which the exhaustive simulator and cut
generator are the core of the engine. The exhaustive simulator serves
as the prover in the engine that checks whether a candidate pair of
nodes is equivalent by comparing all the possible values in their entire
truth tables. An input pattern that disproves the candidate pair, i.e.,
yielding different function values at the two nodes, will be collected
as a counter-example (CEX). The exhaustive simulator is designed
to be efficient: it is capable of checking a batch of candidate pairs
using a highly parallel algorithm, with a window merging procedure
for reducing the total simulation effort.

The cut generator plays a crucial role in checking candidate pairs
of nodes with large support sizes. Due to exponential complexity, it
is infeasible to exhaustively simulate the global functions of such
nodes. Instead, the cut generator produces multiple common cuts
for each pair of nodes, and the exhaustive simulator evaluates the
corresponding local functions of the candidate pairs. By limiting
the sizes of these cuts, the simulation effort can be successfully
controlled. A detailed introduction to cut generation will be given
in Section III-C1.

The remaining modules have their counterparts in the traditional
SAT sweeping framework which are conceptually similar to them.
The miter manager maintains the miter in AIG data structures and
can reduce the miter by merging proved pairs of equivalent nodes.
It is also equipped with an EC manager which is responsible for
maintaining the equivalence class information and generating candi-
date pairs to be proved. The partial simulator performs simulation of
random patterns for initializing the ECs, as well as CEX patterns for
splitting the class of a disproved pair (and potentially other classes)
into smaller ones.

All the modules and subroutines in the simulation-based CEC
engine are GPU-based except window merging which is partially
implemented on CPU, making the engine highly efficient.

B. Exhaustive Simulator

1) Equivalence Checking via Exhaustive Simulation: We start by
introducing how to check the equivalence of a pair of nodes via
exhaustive simulation. The basic idea, as mentioned in Section III-A,
is to compare the entire truth tables of the two nodes. However, the
comparison is only meaningful if the input variables (including their
ordering) of the two truth tables are exactly the same. Consider the
function xy′+xy′z as an example. Its truth tables are 00100010 and
01000100 for the input orders (x, y, z) and (y, x, z) respectively.
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Fig. 3. Illustration of the three dimensions of parallelism.

Also, note that xy′ + xy′z = xy′, and the truth table of xy′ with
input order (x, y) is 0010, indicating that the truth table of equivalent
functions may not be the same under different variables and orderings.

The proposed exhaustive simulator handles this issue as follows.
In the case of simulating the global functions of the two nodes being
checked, if their support sets are not identical, the union of their
supports are taken as the input nodes of the truth table with the
order of increasing node ids. Since it is possible that a node does not
functionally depends on one or more of its support nodes (e.g., xy′+
xy′z does not functionally depend on z), two nodes with nonidentical
supports can be equivalent and still need to be checked. In the case
of checking the local functions of a node pair, the inputs are simply
the nodes in the corresponding common cut of the pair provided by
the cut generator, as introduced in Section III-A.

The truth tables of two nodes n, m being checked are computed by
propagating truth tables along the intermediate nodes that drive n and
m, starting from the input nodes. We denote the collection of such
intermediate nodes as the simulation window (or simply window) of n
and m, and the two nodes are called the roots of the window. Figure 2
provides an illustration of windows in the scenario of simulating the
global and local functions of two nodes respectively. Formally, a
window contains the intersection of the TFIs of the roots with the
TFOs of the inputs, as well as the roots.

The computation procedure begins with assigning projection truth
tables to the input nodes. Then, the truth table of a node in the
window can be derived by processing the truth tables of its fanins
according to the node’s operation. For instance, in the AIG shown
in Figure 2, the truth table of the node h = de′ can be computed
as TT (h) = TT (d) & !TT (e) where &, ! stand for bitwise AND,
NOT respectively. The computations for all the nodes in the window
should be scheduled in a topological order to ensure correctness. In
our exhaustive simulator, this is performed in a level-wise parallel
way, which is detailed in the next subsection.

2) Parallel Simulation: The exhaustive simulator is equipped with
three dimensions of parallelism, as illustrated in Figure 3. The most
fine-grained parallelism happens in the truth table computation of
a single node, in which each word (a 32-bit or 64-bit element) in
the bit string of the truth table is computed by a separate thread.
Such parallel processing is particularly efficient on GPUs because of
coalesced memory accesses [25] which minimizes bandwidth usage.

Algorithm 1 Parallel Exhaustive Simulation
Input: Miter, set of pairs p and windows w, available memory in words M
1: N ←

∑
wi∈w(|wi|+ |inputs(wi)|) ▷ number of nodes and inputs

2: E ← maxe∈N 2e s.t. 2e ·N ≤M ▷ entry size of simulation table
3: simt← simulation table containing E ·N words
4: rm ← (maxwi∈w tt len(wi))/E ▷ number of rounds
5: for each r = 0, . . . , rm − 1 do ▷ simulate range [rE, (r + 1)E)
6: w′ ← {wi ∈ w : tt len(wi) ≥ (r + 1)E}
7: ▷ w′ is the set of windows that need simulation in round r
8: lm ← maxwi∈w′ maxn∈wi level(n) ▷ max level in round r
9: parallel write proj. TT segments into simt for inputs to all wi ∈ w′

10: for each l = 1, . . . , lm do
11: parallel simulate all nodes in w′ with level l, and update simt

12: parallel for each pi = (ni,mi) ∈ p do
13: if the TT segments of ni and mi in simt mismatch then
14: Mark pi as nonequivalent, and optionally collect CEX
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Fig. 4. Illustration of window merging.

The second dimension of parallelism resides in the truth table
computation of the nodes in a window, following the level-wise
parallel [14] fashion. Specifically, nodes with the same topological
level are grouped into a batch and concurrently processed since there
is no intra-batch dependency between nodes, and different batches
are processed sequentially in the order of increasing topological level.
The topological level of a node is similar to the node’s level defined
in Section II-A, and the difference is that the input nodes to the
window are assigned with zero topological levels.

The third dimension of parallelism is to simulate multiple windows
concurrently. If the number of inputs to a window is small, the truth
tables to be computed are short in length, and the window is likely
to be small sized. In this case, the degree of parallelism provided by
the other two dimensions is limited, so it is essential to include this
dimension to fully exploit the computational power of GPUs.

Algorithm 1 shows the high-level pseudocode of parallel exhaustive
simulation. Given a batch of node pairs and their windows, a
simulation table is allocated for storing the simulation results of all
the nodes in the windows and the patterns at the window inputs (lines
1-3). Since the truth table of a pair can be long and there can be many
pairs in the batch, it is impracticable for the simulation table to record
the entire truth tables. Instead, each node or input is assigned with
an entry of E = 2e words, where E is decided on-the-fly to be
the maximum feasible value such that the simulation table fits in a
provided size of memory (line 2). To ensure exhaustive simulation,
the main procedure is formulated to be multi-rounded: in round r,
the truth table words with indices in the range of [rE, (r+1)E) are
simulated with the three dimensions of parallelism (lines 6-11). The
simulation results of all the node pairs are compared at the end of
each round. If a mismatch is detected at a pair, this pair is marked as
nonequivalent and the corresponding input pattern can be collected
as a CEX (lines 12-14).

3) Reducing Simulation Effort via Window Merging: In exhaustive
simulation, windows may overlap with each other and a node
appearing in multiple windows must be simulated separately in each
window due to nonidentical input nodes, which potentially affects the
efficiency. A possible method for addressing this issue is to merge



multiple windows with high overlaps into one, and simulate all the
corresponding pairs using the single merged window, as depicted in
Figure 4. In this way, the total number of nodes that need simulation
as well as the number of windows can be reduced. On the other hand,
the number of inputs may increase after merging a window which
leads to longer truth tables, and it should be carefully controlled to
ensure that the overall effect of window merging is beneficial.

Our algorithm of window merging is performed in the beginning of
exhaustive simulation and it employs a fast heuristic that works well
in practice. First, we sort the batch of windows in the lexicographical
order of their input nodes. Since the input set to a window is ordered
in ids (Section III-B1), the windows with similar input sets tend
to be closer to each other after sorting. The resulting windows are
then generated by maximally merging consecutive windows in the
order while keeping the input sizes of the merged windows under
a threshold ks. As an example, for the five windows with inputs
{a, b}, {a, b}, {a, b, c}, {a, e}, {a, f} and ks = 3, the first three and
the last two are merged together respectively. We remark that better
merging results may be obtained using a more dedicated approach
(e.g., clustering-based) but it may induce a large overhead. Window
merging is only enabled for global function checking, because it is
generally not beneficial for local function due to small window sizes.

C. Local Function Checking

1) Cut Enumeration and Selection Criteria for Effective Checking:
Local function checking is a key component in the simulation-based
CEC engine, which is indispensable for proving the equivalences
of node pairs with large support sizes that cannot be exhaustively
simulated in terms of global functions. If the local functions of two
nodes in terms of a common cut are identical, the two nodes are
proved equivalent. As an example, the equivalence of the node pair
shown in Figure 2 can be proved with the local functions in terms
of the cut {f, g, h}, which reduces the computation from simulating
25 patterns per node in global function checking to 23 patterns.

However, two equivalent nodes may also have nonidentical local
functions in terms of a common cut, e.g., those in terms of the cut
{f, h, i, j} in Figure 2. This is due to SDCs at the cut, and the
equivalence is not affected as long as all the patterns yielding different
local function values are SDCs. In the context of local function
checking, the equivalence of two nodes is inconclusive if nonidentical
local functions are encountered. To enhance the chance of successful
checking, two strategies can be applied: increasing the quantity, and
improving the quality of the common cuts used in checking.

To increase the quantity of cuts, we design a cut generator for
the CEC engine that is capable of producing multiple common cuts
for each pair using a cut enumeration-based [26] framework. For
each AIG node n in the miter, the cut generator enumerates a set of
candidate cuts E(n) with maximum cut size kl by

E(n) = {u ∪ v : u ∈ P (n0) ∪ {{n0}},
v ∈ P (n1) ∪ {{n1}}, |u ∪ v| ≤ kl}, (1)

where n0, n1 are the two fanins of n, and P (·) denotes the set of
priority cuts [27] of the node that contains its best C candidate cuts
selected using certain criteria. kl and C are parameters that control
the computational effort of local function checking. The common
cuts of a pair can then be computed by Equation (1) with n0 and n1

replaced by the pair of nodes and without including their trivial cuts.
The main advantages of cut enumeration are that it can efficiently
produce multiple cuts for all the nodes (and common cuts for all the
pairs) in a topological order traversal, and that it can adopt customized
criteria for selecting a set of priority cuts.

TABLE I
CUT SELECTION CRITERIA IN DIFFERENT PASSES

Pass Main Metric Tie-breaker Metric 1 Tie-breaker Metric 2

1 fanout cut size small level
2 small level cut size fanout
3 large level cut size fanout

To obtain high-quality cuts, the cut selection criteria is formulated
delicately in which the following metrics are involved:

• average number of fanouts of cut nodes: large fanout is used as a
cutpoint selection heuristic in [16], so a high value is preferred;

• cut size: a small value is preferred for preventing oversized cuts
during cut enumeration, and encouraging the inclusion of more
reconvergent structures in the logic cone so that SDCs can be
reduced, which enables higher chances of proving equivalences;

• average level of cut nodes: a small value is preferred for includ-
ing more logic in the cone and reducing SDCs, but a high level
may also be beneficial since it leads to smaller cuts, and some-
times a high-level cut is sufficient to prove a pair if one node is
generated by the local restructuring of the other (e.g., Figure 2).

In practice, it is difficult to obtain cuts that are good in terms of all
the metrics. We tackle this issue by applying three passes of cut
generation and checking. In different passes, the metrics are consid-
ered with different priorities to increase the diversity of the generated
cuts, as specified in Table I. For instance, in the first pass, cuts with
larger fanouts are selected; if a tie happens, cuts of smaller size are
preferred; if there is still a tie, cuts with smaller levels are used.

A problem of cut enumeration is that it lacks the view of common
cuts when generating cuts for single nodes, which subsequently
causes many oversized (> kl) common cuts that cannot be used
in local function checking. This problem is resolved by generating
similar cuts for a pair of nodes in cut enumeration. Specifically, we
define a similarity metric between a cut c and a set of priority cuts P
as s(c, P ) =

∑
c′∈P |c∩c′|/|c∪c′|. When enumerating the cuts of a

non-representative node n, the similarity between a cut of n and the
priority cut set of the corresponding representative node in the class
is computed (since n and the representative form a pair), and cuts
with larger similarities are preferred. In case of a tie, the criteria in
Table I are used. On the other hand, the representative nodes adopt
Table I for cut selection as introduced in the previous paragraph.
In this way, the priority cuts of a pair of nodes tend to have high
overlaps to each other, thus increasing the number of usable common
cuts in checking.

2) Flow of Cut Generation and Checking Pass: Cut generation
and checking are performed in level-wise parallel, where the level is
specially formulated to consider the dependencies between represen-
tatives and non-representatives, since the priority cuts of a represen-
tative node should be computed before any other non-representatives
in its class. We denote such levels as enumeration levels, defined by

el(n) =


0, n is PI,

1 + max{el(n0), el(n1)}, n is not PI and n is repr.,

1 + max{el(n0), el(n1), el(repr(n))}, otherwise,
(2)

where repr(n) signifies the corresponding representative of a non-
representative node n, and n0, n1 are the two fanins of n.

Algorithm 2 describes the flow of a cut generation and checking
pass. It starts with computing the enumeration levels of all the nodes
(line 2) and assigning trivial cuts to the PIs as their priority cuts (lines
4-5). The priority cuts of internal nodes are then computed level by



Algorithm 2 Cut Generation and Checking Pass
Input: Miter miter
1: buf ← ∅ ▷ allocate common cut buffer
2: Compute enumeration levels el(·) of all nodes by Equation (2)
3: lm ← maxn∈miter el(n)
4: parallel for each PI n of miter do
5: P (n)← {{n}}
6: for each l = 1, . . . , lm do
7: enum← {n ∈ miter : el(n) = l}
8: ▷ enum is the set of nodes whose cuts are to be computed at level l
9: parallel for each n ∈ enum do

10: parallel compute P (n) by cut enum. & selection (Section III-C1)
11: p← {(repr(n), n) : n ∈ enum, n is a non-representative}
12: parallel generate valid common cuts of pairs in p as cmn
13: if |cmn| > capacity(buf)− |buf | then ▷ insufficient space
14: Local function checking using cuts in buf by Algorithm 1
15: buf ← ∅ ▷ clear the buffer
16: buf ← buf ∪ cmn ▷ insert in parallel
17: if |buf | > 0 then ▷ check the final batch
18: Local function checking using cuts in buf by Algorithm 1
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Fig. 5. Flow of simulation-based CEC engine.

level, following the criteria introduced in Section III-C1 (lines 6-
10). In particular, cut enumeration and priority cut selection for a
single node are performed in fine-grained parallelism (line 10) using
the method of [28], where each cut in E(n) is generated using an
individual thread, and the selection of the best C cuts that constitutes
P (n) are jointly performed by the group of threads in parallel. We
skip further details due to the space limit.

Local function checking is interleaved with cut enumeration. At
each level, the common cuts of the node pairs whose priority cuts are
just computed are generated and inserted into a constant sized buffer
(lines 11-12 and 16). When the buffer does not have sufficient space
to accept a new batch, an exhaustive simulation is invoked to check
all the local functions in terms of the cuts in the buffer and update
the equivalence statuses of the proved pairs (lines 13-15). The use
of the common cut buffer reduces memory consumption, compared
to the method of gathering all the common cuts and performing a
single batch of checking in the end.

D. Overall Flow of Simulation-based CEC Engine

Figure 5 depicts the overall flow of the CEC engine which consists
of three types of phases: a PO checking phase (P), a global function
checking phase (G), and repeated local function checking phases (L).

In the PO checking phase, the CEC engine attempts to prove all or
a subset of simulatable miter POs in terms of global functions, that
is, the primary outputs whose checking can be carried out within a
computational budget. The motivation for performing PO checking
in the beginning is to maximally reduce the miter so the efforts of
checking internal pairs in the removed part of the miter can be saved.
A simulatable PO is defined as follows with two parameters kP , kp
(kP > kp) that control the budget of checking: if the support sizes of

all the POs are no larger than kP , then all the POs are simulatable;
otherwise, a PO is simulatable if its support size is no larger than
kp. The design of two thresholds rather than one is to encourage the
CEC engine to prove the miter in a one-shot PO checking if possible.

After initializing equivalence classes by partial random simulation,
the global function checking phase verifies simulatable node pairs
with support sizes no larger than a threshold kg , along with collecting
CEXs to disprove the nonequivalent pairs and refine the classes.

If the miter cannot be proved by PO and global function checking,
the local function checking phases will be conducted repeatedly,
where each phase contains three passes of cut generation and
checking that attempt to prove all the node pairs as introduced in
Section III-C. Since the structure of the miter is modified after
reduction at the end of a phase, the cuts generated in the subse-
quent local checking phase can be different, which provides new
chances for verifying the equivalent pairs that failed to be proved
in the previous phases. If the miter cannot be further reduced after
repeated local function checking, the equivalence of the two circuits
is undecided and the reduced miter can be passed to another CEC
engine for further proving.

We note that the partial simulator, miter reduction, the EC and CEX
manager are all implemented by GPU-parallel algorithms, which
ensures the high overall efficiency of the CEC engine.

IV. EXPERIMENTAL RESULTS

The simulation-based CEC engine is implemented in 8,000 lines
of CUDA/C++ code on top of the GPU-based logic synthesis tool
CULS2. We denote it as the “GPU engine” in this section for brevity.
The experiments are performed on a Linux machine with Intel Xeon
Gold 6326 CPU and NVIDIA RTX A6000 GPU with 48 GB DRAM.

The testcases are selected from the EPFL Combinational Bench-
mark Suite [29] and the IWLS 2005 Benchmarks [30], covering
arithmetic and control designs. To demonstrate the effectiveness of
our parallel CEC approach, we enlarge the designs by applying
multiple times of the ABC command double, which is a com-
mon method used in the works on parallel logic synthesis and
verification [14], [23], [31]. The two circuits compared by CEC
are the original and optimized versions of a benchmark, where the
optimized one is generated by executing ABC resyn2, an AIG
optimization script consisting of several passes of balancing, rewriting
and refactoring [32]. Table II shows the statistics of the benchmarks
and miters constructed by the pairs of circuits being compared.

In the experiments, we use the following parameter values for the
GPU engine: kP = 32, kp = kg = 16, kl = 8, C = 8. The
maximum support size of a window after window merging ks is set as
the support size threshold (kP , kp, or kg) of the phase. For instance,
in the PO checking phase, ks = kp = 16 if not all of the POs are
simulatable. We adopt the ABC combinational equivalence checker
(command &cec -C 100000) for further proving a reduced miter
if it is undecided (i.e., not empty) after running the GPU engine. A
large value is assigned for the maximum number of conflicts during
a SAT call (-C) since most of the easy-to-prove pairs have already
been handled by the GPU engine.

A. Runtime Comparison with ABC and Commercial Checker

We evaluate our approach by comparing it with the ABC checker
(command &cec) and a commercial verification tool Cadence Con-
formal LEC (version 19.20). ABC &cec is a single-threaded yet
high-performance checker based on SAT sweeping. There is no

2https://github.com/cuhk-eda/CULS

https://github.com/cuhk-eda/CULS


TABLE II
BENCHMARK STATISTICS AND RUNTIME COMPARISON OF OUR METHOD WITH ABC AND CONFORMAL LEC

Benchmarks Statistics ABC &cec
Runtime (s)

Cfm (16 CPUs)
Runtime (s)

Ours (GPU+ABC) Speed-up

#PIs* #POs* #Nodes† Levels† GPU (s) Reduced (%) ABC (s) Total (s) vs. ABC vs. Cfm

hyp 7xd 32768 16384 45881216 24801 7859.26 406002 4616.56 40.2 418.48 5035.04 1.56× 80.64×
log2 10xd 32768 32768 62072832 444 >4 months‡ 118392 119633.18 100.0 - 119633.18 88.11× 0.99×
multiplier 10xd 131072 131072 52600832 274 2370.52 3213 159.54 100.0 - 159.54 14.86× 20.14×
sqrt 10xd 131072 65536 44978176 5058 20640.56 30605 52.29 0.7 20623.24 20675.53 1.00× 1.48×
square 10xd 65536 131072 33442816 250 1021.40 2710 144.35 100.0 - 144.35 7.08× 18.77×
voter 10xd 1025024 1024 21862400 70 62610.44 1166 54.20 43.5 35611.63 35665.83 1.76× 0.03×
sin 10xd 24576 25600 10689536 225 2499.28 2081 78.88 100.0 - 78.88 31.68× 26.38×
ac97 ctrl 10xd 2307072 2299904 22685696 12 248.57 1563 97.51 98.9 22.43 119.94 2.07× 13.03×
vga lcd 5xd 549248 549856 6337536 24 95.82 317 18.51 20.1 81.95 100.46 0.95× 3.16×

Geomean 4.89× 4.88×
* Original/optimized circuit statistics. † AIG miter statistics (excluding contributions of XORs). ‡ Timeout after 122 days. Use 122 days when computing speed-up.
“ nxd” in a benchmark name stands for enlarging the benchmark by executing ABC double n times.

publicly available parallel checker to our knowledge, so we compare
to Conformal which supports parallel checking with up to 16 CPU
threads. Although the implementation details of commercial checkers
are unknown, it is believed that they perform equivalence checking
using a combination of engines [33], and a possible way for multi-
threading is to run different engines simultaneously and early stop
when an engine finishes.

Table II shows the results of our approach and the runtimes of
ABC checker and Conformal. The subcolumn “Reduced (%)” reports
the percentages of reduction in miter sizes after executing the GPU
engine. It is worth noting that the GPU engine can fully prove
(i.e., 100% reduction without the aid of SAT) 4 out of the 9 cases
with significant accelerations, including one case (log2 10xd) whose
runtime is decreased from over 4 months to 1.4 days. Moreover,
it solves a large portion of the problem on the cases hyp 7xd and
ac97 ctrl 10xd, as indicated by the fast ABC verification of the
reduced miters (subcolumn “ABC (s)”) compared to exclusive ABC
checking (column “ABC &cec”). The GPU engine can only reduce
a minor part of the miter on the cases sqrt 10xd and vga lcd 5xd
but with a short runtime, so the overall solving time is marginally
degraded. On average, the combination of GPU engine and ABC
checker achieves 4.89× speed-up over the standalone ABC checker.

The combined GPU and ABC checker obtains an averaged 4.88×
acceleration and is faster on 7 out of the 9 cases when compared to
Conformal with 16 CPU threads. The commercial checker is much
more efficient on the case voter 10xd and the reason might be that
one of the engines in Conformal is well-suited to solving this case.

B. Breakdown Analysis of Simulation-based CEC Engine

Figure 6 shows the runtime percentages of different phases in the
GPU engine, which differ across cases. In particular, log2 10xd and
sin 10xd can be directly proved by PO checking (P). The rest of
the cases (except sqrt 10xd that can hardly reduced by the GPU
engine) are further analyzed in Figure 7, in which the intermediate
miters during the execution of the GPU engine are checked by ABC,
and the normalized ABC checking times (over the standalone ABC
checking time of the case) are plotted. For instance, the labels PG and
PGL refer to the checking times of the miters extracted after the G
phase and at the end of the GPU flow, respectively. It can be seen that
all the three types of phases play important roles in checking some
cases, i.e., P on ac97 ctrl 10xd, G on multiplier 10xd, square 10xd,
and L on most cases, which demonstrates the effectiveness of the
overall design of the GPU CEC engine.
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Fig. 6. Runtime breakdown of
the simulation-based CEC engine.
Benchmark names are abbreviated.
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Fig. 7. Time of proving GPU-reduced
miter by ABC with different flows, nor-
malized by the time of standalone ABC.

V. DISCUSSION

Our CEC approach is implemented in a minimalist style due to
the large development effort required. Here, we discuss a few tweaks
that can be applied to further boost checking efficiency.

First, the current integration of the GPU engine and the ABC
checker does not implement transferring ECs from GPU to ABC,
and the ECs in ABC checking are reinitialized from scratch. With
the EC transferring developed, nonequivalent pairs identified by GPU
need not be rechecked by ABC, thus reducing the overall runtime.

Second, the GPU flow can be finetuned to be more adaptive, e.g.,
certain types of passes can be disabled on-the-fly during the repetitive
L phases if they are found to be ineffective on the case.

Third, some improvements proposed in previous works may also
be implemented on GPUs and integrated into our engine, including
distance-1 simulation of CEXs [8], reverse simulation [21], and
interleaving sweeping with logic rewriting [8], [14].

VI. CONCLUSION

This paper presents a new perspective on checking combinational
equivalences using exhaustive simulation and a simulation-based
CEC engine implemented on GPUs. The GPU engine is equipped
with a fast exhaustive simulator with a high degree of parallelism, a
local function checking scheme for proving difficult candidate pairs
with restricted computational effort, and other GPU-based managers
and algorithms that are crucial to the high overall performance of the
engine. Experiments show that the GPU engine can efficiently solve
four large cases without the aid of an external checker, and a CEC
flow integrating the GPU engine and ABC checker achieves 4.89×
and 4.88× speed-up on average over the standalone ABC checker
and a commercial verification tool, respectively.
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