
Massively Parallel
AIG Resubstitution
Yang Sun*, Tianji Liu*, Martin D.F. Wong and Evangeline F.Y. Young

CUHK

Outline

• Motivation & Background

• Parallel AIG Resubstitution

• Experimental Results

• Summary

Motivation

• Logic Optimization

• Netlists are restructured and simplified to improve metrics, e.g., area and delay

• Research trend of parallel logic optimization

• Multi-core CPU: AIG rewriting [1]

• GPU: AIG rewriting [2][3], refactoring, balancing [4]

• Resubstitution

• A more flexible framework than rewriting and refactoring

• Supports high-effort optimization

[1] V. Possani et al., “Unlocking Fine-grain Parallelism for AIG Rewriting”, Proc. ICCAD’18.

[2] S. Lin et al., “NovelRewrite: Node-level Parallel AIG Rewriting”, Proc. DAC’22.

[3] L. Li et al., “A Recursion and Lock Free GPU-Based Logic Rewriting Framework Exploiting

Both Intranode and Internode Parallelism”, IEEE TCAD, 2023.

[4] T. Liu et al., “Rethinking AIG Resynthesis in Parallel”, Proc. DAC’23.

Background

• Resubstitution

• Re-expresses the function of a node (pivot) using other nodes (divisors) in the logic network

• The nodes dedicated to driving the pivot (fanout-free cone, FFC) can be removed

• K-resubstitution

• Adding 𝑘 new nodes to express the function of the pivot using 𝑘 + 1 divisors

• If FFC size > 𝑘 (positive gain), the circuit size is reduced

• Window-based: restrict the candidate divisors in a local region around the pivot

𝑘 = 1

Overall Flow

• Divisor Collection and Evaluation

• The most time-consuming procedures

• Process all nodes in parallel

• A divisor collection strategy to ensure cycle-freeness

• Conflict Resolving

• Conflict may occur in parallel replacement

• Efficient conflict-resolving algorithm

• Replacement

• Commit the updates in parallel without data race

Cycle-Free Divisor Collection

• Window construction

• Start with a reconvergence-driven cut of pivot

• Iteratively expand the window toward POs

• Stop when max window size is reached

• Divisor Collection

• In sequential case,

• Divisors = window – FFC of pivot – TFO of pivot

• Correctness is guaranteed

• In parallel case, there may still be cycles

• E.g., node 𝑛 is a divisor of 𝑚, 𝑚 is a divisor of 𝑛

Cycle-Free Divisor Collection

• Resolve cycles before replacement?

• Time-consuming

• Potential quality degradation

• Our cycle-free divisor collection strategy

• Theoretically prevents cycle in parallel case

• No cyclic dependency if the divisors:

1. have smaller levels; or

2. have the same level, but smaller ids

Candidate Divisor Evaluation

• Intuitive Method

• Exhaustively try all the combinations

• Candidate Filtering

• Some candidate divisors are trivially infeasible

Example (𝑘 = 1): pivot = 0011

a = 0010 b = 0001 c = 1011 d = 0111 e = 0101

pivot = a ∨ b = c ∧ d

• Can be extended to 𝑘 > 1
2-resub case

Conflict Resolving

• Issue

• Still, there are other types of potential conflicts

• Conflict Cases

• Change of FFC

• Ancestor Deletion

• Divisor Deletion

• Two-stage Conflict Resolving

1. Parallel checking

2. Sequential Resolving

• No need to check cycles

Conflict Resolving

• Parallel Checking

• Conservative assumption that all replacements
are accepted

• Mark FFC nodes as deleted if no conflict

• Sequential Resolving

• Decide whether to commit an update sequentially

• If pivot or any divisor deleted (fig. c & d), reject

• Recompute the pivot’s FFC (fig. b)

• Accept update if gain>0, mark FFC as deleted

• Update the optimized AIG

• The status of each node is determined

• Parallel update without data race

Experimental Results – K-Resubstitution

• Benchmarks

• EPFL Combinational Suite and IWLS 2005 Benchmarks

• Results

• 41.9x over ABC; 50.3x over mockturtle; best area and second-best delay

Experimental Results – Optimization Sequence

• Fully GPU-parallelized sequence resyn2rs
• GPU-based balancing, rewriting and refactoring in CULS [5]

• Integrate them with our GPU resub

• 0.8% smaller area, 5.8% smaller delay, 46.4x acceleration

[5] https://github.com/cuhk-eda/CULS

Experimental Results – Divisor Collection Strategies

• Comparing three strategies

• Our cycle-free divisor collection strategy

• Full divisor collection with additional cycle checking

• Only collect divisors from smaller levels

• Our strategy is efficient with preferable quality

Our cycle-free strategy:

1. divisors with smaller levels; or,

2. with same level, but smaller ids

Experimental Results – Scalability

• Speedup with different AIG sizes

Summary

• Propose an efficient GPU-parallel framework for window-based k-resubsitution

• 41.9× and 50.3× acceleration over ABC and mockturtle on large AIG benchmarks, with
comparable or better qualities

• 46.4× with superior optimization quality over ABC on the resyn2rs sequence

• Open-sourced in CULS: https://github.com/cuhk-eda/CULS

https://github.com/cuhk-eda/CULS

	Slide 1: Massively Parallel AIG Resubstitution
	Slide 2: Outline
	Slide 3: Motivation
	Slide 4: Background
	Slide 5: Overall Flow
	Slide 6: Cycle-Free Divisor Collection
	Slide 7: Cycle-Free Divisor Collection
	Slide 8: Candidate Divisor Evaluation
	Slide 9: Conflict Resolving
	Slide 10: Conflict Resolving
	Slide 11: Experimental Results – K-Resubstitution
	Slide 12: Experimental Results – Optimization Sequence
	Slide 13: Experimental Results – Divisor Collection Strategies
	Slide 14: Experimental Results – Scalability
	Slide 15: Summary

