
Massively Parallel AIG Resubstitution
Yang Sun

∗

CSE Department, CUHK

ysun22@cse.cuhk.edu.hk

Tianji Liu
∗

CSE Department, CUHK

tjliu@cse.cuhk.edu.hk

Martin D.F. Wong

CS Department, HKBU

mdfwong@hkbu.edu.hk

Evangeline F.Y. Young

CSE Department, CUHK

fyyoung@cse.cuhk.edu.hk

ABSTRACT
Resubstitution is a flexible algorithmic framework for circuit re-

structuring that has been incorporated into many high-effort logic

optimization flows. It is thus important to speed up resubstitution in

order to obtain high-quality realizations of large-scale designs. This

paper proposes a massively parallel AIG resubstitution algorithm

targeting GPUs, with effective approaches to addressing cyclic de-

pendencies and restructuring conflicts. Compared with ABC and

mockturtle, our algorithm achieves 41.9× and 50.3× acceleration on

average without quality degradation. When combining our resubsti-

tutionwith other GPU algorithms, a GPU-based resyn2rs sequence
obtains 46.4× speedup over ABC with 0.8% and 5.8% smaller area

and delay respectively.

1 INTRODUCTION
Logic optimization is an important stage during the synthesis of

digital circuits in which netlists are restructured and simplified in

order to improve the area and delay of the realized circuit. One

of the most widely used circuit representations during logic opti-

mization is And-Inverter Graph (AIG) [7], and many algorithms for

AIG restructuring have been developed over the years which lever-

age optimization opportunities from different aspects, including

rewriting, refactoring [13] and resubstitution [12], to name a few.

The scale of digital designs has become overwhelmingly large

in recent years due to the ever-increasing demand of high perfor-

mance, complex functionality chips as well as the advancement of

semiconductor technology nodes. Hence, there emerges a research

trend of parallel algorithms for accelerating logic optimization. The

works [14] and [8] introduced ways to parallelize AIG rewriting

on multi-core CPUs and GPUs respectively, and the paper [10] pro-

posed parallel algorithms for AIG balancing and refactoring. It was

reported that 10× to 50× speedup could be achieved on average. For

AIG rewriting, the GPU-based algorithm achieves superior accel-

eration over the multi-core CPU-based counterpart [8], indicating

the high performance of GPU for parallel processing applications.

Indeed, compared with multi-core/socket CPU systems, GPUs

are able to launch and execute a huge number of threads (e.g., tens

of thousands) simultaneously with much less overhead in thread

scheduling. This makes GPUs appropriate for applications in which

each computation task is typically small, and in contrast the thread

∗
Both authors contributed equally to this research.

This research was partially supported by a grant from the Research Grants Council of

the Hong Kong Special Administrative Region, China (Project No. CUHK14210923).

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0601-1/24/06

https://doi.org/10.1145/3649329.3655987

scheduling overhead will be significant in the CPU-parallel scenario.

Many EDA areas besides logic synthesis have also benefited from

such powerfulness of GPUs, ranging from static timing analysis [5],

to global routing [9], to design rule checking [6].

In this work, we set our focus on another important algorithm

for AIG optimization, namely resubstitution. Resubstitution aims

to re-express the function of a gate using some other existing gates

(called divisors) in the circuit so that the logic of the divisors can

be reused and the total number of gates can be reduced. Unlike

rewriting and refactoring in which the circuit simplification is done

by improving only the local logic of the gate to be optimized, in

resubstitution there is no theoretical restriction on the locality of

divisors, i.e., a divisor can be arbitrarily far away from the gate,

provided that there is sufficient computational budget. Hence, the

framework of resubstitution is highly flexible. For instance, the

well-known time-costly procedure SAT/BDD sweeping [7] can be

regarded as a special case of resubstitution. Besides its flexibility,

resubstitution can be enhanced using don’t care conditions [11]

for achieving better optimization quality, and has been integrated

into many high-effort logic synthesis flows [2, 3]. These make

resubstitution an important algorithm to be accelerated, which has

never been studied from a parallel perspective to our knowledge.

In light of this, we propose a massively parallel algorithm for a

commonly used version of AIG resubstitution known as window-

based 𝑘-resubstitution [12], and its background will be introduced

in Section 2.2. The contributions of this paper are:

• Highly parallel procedures for divisor collection, candidate

evaluation and network updates.

• A new divisor collection strategy that theoretically prevents

cyclic dependency from happening after resubstitution.

• An efficient algorithm for addressing other types of conflicts

which ensures race-free parallel network update.

Experiments show that GPU-parallel resubstitution obtains 41.9×
and 50.3× speedup compared against the window-based resubstitu-

tion implementations in ABC [4] and mockturtle on average, with

comparable or better result qualities. Moreover, we integrate GPU

resubstitution with other publicly available GPU logic optimiza-

tion algorithms into a GPU-based resyn2rs optimization sequence,

which achieves 46.4× acceleration and superior quality over ABC

resyn2rs with 0.8% smaller area and 5.8% smaller delay.

2 PRELIMINARIES
2.1 Background
In the context of logic synthesis, a combinational circuit is usually

modeled as a Boolean network. A Boolean network is a directed
acyclic graph (DAG) with nodes representing logic functions or

gates, and edges corresponding to signals or nets between the

nodes. The sources and sinks of the DAG are the primary inputs
(PIs) and primary outputs (POs) of the Boolean network. The fanins

https://doi.org/10.1145/3649329.3655987


DAC ’24, June 23–27, 2024, San Francisco, CA, USA Yang Sun, Tianji Liu, Martin D.F. Wong, and Evangeline F.Y. Young

Input

Divisor Collection

Evaluation

Replacement

Output

Repeat for 
Each Node

(a) Sequential workflow

Divisor Collection

Evaluation

Conflict Resolving

Replacement

Repeat for Each 
Conflict Node

Output

In Parallel

In Parallel

In Parallel

Input

(b) Our workflow

Figure 1: Comparison of sequential and our workflow.

and fanouts of a node are the direct predecessors and successors

of the node respectively. The predecessors of a node are the tran-
sitive fanins (TFIs) of the node, and all the predecessors form the

transitive fanin cone of the node. A node’s transitive fanouts (TFOs)
and transitive fanout cone can be defined similarly. An And-Inverter
Graph (AIG) is a Boolean network where each node is an AND gate

with exactly two fanins and signals represented by edges can be

optionally inverted. The level of an AIG node denotes the length of

the longest path from a PI to the node, and the level/delay of an AIG
is the largest level of its POs.

A cut 𝐶𝑛 of a node 𝑛 in a Boolean network is a set of nodes such

that any path from a PI to 𝑛 contains a node in the set. A logic cone
of a node 𝑛 includes 𝑛 itself and the intersection of the TFI nodes

of 𝑛 with the TFO nodes of a cut 𝐶𝑛 . A fanout-free cone (FFC) of a
node 𝑛 is a logic cone of 𝑛 such that any path from a node in the

cone to a PO contains 𝑛. All the nodes in the FFC of 𝑛 are dedicated

to driving the logic of 𝑛 and thus can be removed if 𝑛 is deleted.

2.2 Window-based k-resubstitution
Window-based 𝑘-resubstitution attempts to resynthesize a node

under optimization (denoted as pivot) using one or more divisors

that are collected from a local subgraph near the node (denoted as

window). All the nodes in the window have a common cut𝐶 which

is the PIs of the window subgraph. The functions of the pivot and

the divisors are expressed in terms of 𝐶 instead of the PIs of the

entire AIG in order to restrict the time complexity of resubstitution.

The parameter 𝑘 in 𝑘-resubstitution stands for the number of

new nodes inserted during the resynthesis evaluation of a pivot.

For example, if 𝑘 = 0, resubstitution checks whether a divisor is

equivalent to the pivot. If 𝑘 = 2, the algorithm finds whether there

exists three divisors such that combining them using two AIG nodes

(with arbitrary fanin inversion status) yields a node equivalent to

the pivot.
1
We denote such a set of 𝑘 + 1 divisors through which a

node equivalent to the pivot can be constructed as a feasible divisor
set D*. The search for a feasible divisor set is usually done by an

exhaustive enumeration of all the candidate divisors, leading to

𝑂 (𝑚𝑘+1) complexity for checking one pivot where𝑚 is the number

of candidate divisors. Besides, a feasible 𝑘-resubstitution is only

beneficial if the number of nodes deleted (i.e., the number of FFC

nodes of the pivot) is larger than𝑘 in order to achieve area reduction.

Due to these two reasons, 𝑘 is usually bounded by 2 or 3 in practice.

1
The equivalences here are up to complementation.

3 PARALLEL AIG RESUBSTITUTION
In this section, we introduce our parallel 𝑘-resubstitution. First, we

give an overview of the framework. We then describe our divisor

collection strategy tailored for avoiding cyclic dependencies in par-

allel settings, and details in candidate divisor evaluation. Finally, we

present an effective and fast conflict resolutionmethod for detecting

and addressing potential conflicts brought by parallelization.

3.1 Overview of Parallel Resubstitution
Figure 1 shows the sequential and the proposed parallel workflow.

In sequential resubstitution, divisor collection, evaluation and re-

placement are repeated sequentially for each node in the AIG, as

shown in Figure 1a. In our framework, these three procedures are

parallelized in which each thread performs the corresponding com-

putational task of a single node.

Divisor collection and evaluation are the most time-consuming

procedures in classical resubstitution algorithms [4]. In divisor

collection, every node constructs a window and only cares about

the local function inside the window. Such property enables massive

parallelization because every thread can focus on one node and

operate locally without the need for inter-thread communication.

However, collecting divisors without careful consideration might

result in cyclic dependency, which has to be resolved with extra

effort. To avoid that, we propose a cycle-free divisor collection

algorithm where cyclic dependency is proven to be impossible. The

explanation of such dependency and the algorithm details will be

given in Section 3.2.

The evaluation procedure for searching feasible divisor sets is

described in Section 3.3. If some divisors are evaluated as feasible,

they can be applied to replace the original AIG. However, there are

three conditions under which the replacements might be conflicting,

as will be shown in Section 3.4.1. To resolve the conflict issue, we

first apply a parallel conflict identification algorithm to accept those

replacements that do not conflict with any other replacement. An

efficient method is then applied to resolve the remaining conflicts

in sequence. Details will be given in Section 3.4.2. With all conflicts

having been resolved, new structures can be updated in parallel

without any data race.

3.2 Divisor Collection for Cycle-free Parallel
Resubstitution

During resubstitution, given a cut 𝐶𝑛 of a pivot node 𝑛, a window

𝑊𝑛 of 𝑛 is constructed as a restricted TFO subgraph of𝐶𝑛 such that

𝐶𝑛 is a cut of all the nodes in𝑊𝑛 . The constraint can be a maximum

window size, or a maximum number of levels beyond the pivot.

Figure 2 shows an example where the windows only contain nodes

with a level at most one higher than the corresponding pivot.

Traditionally, given a window𝑊𝑛 , the divisors of the pivot 𝑛 are

essentially the nodes in 𝑉 (𝑊𝑛) ∪𝐶𝑛 but with two kinds of nodes

excluded. First, any FFC node of 𝑛 in𝑊𝑛 is not considered as a

divisor, since it can be deleted if there is a successful resubstitution.

Second, any TFO of 𝑛 cannot be a divisor, otherwise there may be

a cyclic dependency involving the divisor and the pivot after resub-

stitution and the resulting AIG will be invalid, which is illustrated

by Figure 3. These two exceptions during divisor collection ensure

the effectiveness and correctness of sequential resubstitution.



Massively Parallel AIG Resubstitution DAC ’24, June 23–27, 2024, San Francisco, CA, USA

Algorithm 1 Cycle-Free Divisor Collection (per thread)

Input: Pivot 𝑛, cut𝐶 , maximum number of candidate divisors𝑀𝑚𝑎𝑥

Output: Candidate divisors 𝐷

1: 𝐷 ← 𝐶 ⊲ collect cut nodes first

2: 𝑇𝐹𝐼 ← 𝑇𝐹𝐼 (𝑛,𝐶 ), 𝐹 𝐹𝐶 ← 𝐹𝐹𝐶 (𝑛,𝐶 )
3: for each 𝑑 ∈ 𝑇𝐹𝐼 do
4: if 𝑑 ∉ 𝐹𝐹𝐶 then
5: 𝐷 ← 𝐷 ∪ 𝑑
6: for each 𝑑 ∈ 𝐷 do ⊲ iteratively expands the window

7: for each 𝑜 ∈ 𝑑.𝑓 𝑎𝑛𝑜𝑢𝑡𝑠 do
8: if 𝑜 ∈ 𝐶 or 𝑜 ∈ 𝐹𝐹𝐶 then continue
9: if 𝑜.𝑙𝑒𝑣𝑒𝑙 > 𝑛.𝑙𝑒𝑣𝑒𝑙 then continue
10: if 𝑜.𝑙𝑒𝑣𝑒𝑙 = 𝑛.𝑙𝑒𝑣𝑒𝑙 and 𝑜.𝑖𝑑 > 𝑛.𝑖𝑑 then continue
11: if 𝑜 ∉ 𝐷 and 𝑜.𝑓 𝑎𝑛𝑖𝑛𝑠 ⊂ 𝐷 then
12: 𝐷 ← 𝐷 ∪ 𝑜
13: if |𝐷 | = 𝑀𝑚𝑎𝑥 then return

In the parallel scenario, however, such formulation of divisor

collection fails to prevent the aforementioned cyclic dependency

from happening. To see why a cycle may still exist, consider the

example shown in Figure 2. Note that 𝑝2 is a divisor of pivot 𝑝1,

and 𝑝1 is also a divisor of pivot 𝑝2. If a feasible divisor set of 𝑝1
contains 𝑝2 and vice versa, there will be a cycle of length 2 after

resubstitution in which 𝑝1 and 𝑝2 depend on each other. It is not

difficult to see that longer cyclic dependencies may also happen,

e.g., 𝑛1 ← 𝑛2 ← 𝑛3 ← 𝑛1 for a cycle of length 3.

To address this issue, we introduce a new constraint during

divisor collection for parallel resubstitution. The new approach

can theoretically guarantee that there is no cycle after parallel

resubstitution, which is formalized as Proposition 1.

Proposition 1. If the collected divisor sets of all the nodes in an
AIG contain only (1) nodes with a level smaller than the corresponding
pivot, or (2) nodes with the same level of the corresponding pivot but a
smaller node id, then there will be no cyclic dependency after parallel
resubstitution.

Proof. Consider a directed dependency graph 𝐺 = (𝑉 , 𝐸) that
captures the dependency between a node and its divisors. In𝐺 , the

node set𝑉 is identical to the node set of the AIG, and for each node

𝑛, we add an edge (𝑑, 𝑛) to 𝐸 for every divisor 𝑑 in the collected

candidate divisor set of 𝑛. It then suffices to show that 𝐺 is acyclic

in order to prove the original statement.

For any edge 𝑒 = (𝑛,𝑚) ∈ 𝐸, we define Δ𝑙 (𝑒) =𝑚.𝑙𝑒𝑣𝑒𝑙 −𝑛.𝑙𝑒𝑣𝑒𝑙
and Δ𝑖 (𝑒) = 𝑚.𝑖𝑑 − 𝑛.𝑖𝑑 . Suppose that there exists a cycle Π =

(𝑒1, 𝑒2, . . . , 𝑒𝑘 ) = ((𝑛1, 𝑛2), (𝑛2, 𝑛3), . . . , (𝑛𝑘 , 𝑛1)) in 𝐺 . It is clear

that

∑
𝑒∈Π Δ𝑙 (𝑒) = 0 and

∑
𝑒∈Π Δ𝑖 (𝑒) = 0. Since the divisor sets

only contain nodes with a level no greater than the corresponding

pivot, we have Δ𝑙 (𝑒) ≥ 0 for any edge 𝑒 ∈ 𝐸, and hence Δ𝑙 (𝑒) = 0

for any edge 𝑒 ∈ Π, i.e., all the nodes involved in the cycle Π have

the same level. This implies that Δ𝑖 (𝑒) > 0 for any edge 𝑒 ∈ Π
because a divisor whose level is the same as its pivot needs to have

a smaller id. However, this contradicts

∑
𝑒∈Π Δ𝑖 (𝑒) = 0, and we

conclude that 𝐺 is acyclic. □

Algorithm 1 elaborates our cycle-free divisor collection. The

candidate divisor set 𝐷 is initialized with the cut nodes (line 1) and

the non-FFC nodes in the TFI cone of the pivot bounded by cut 𝐶

a

b b window

pivot

candidate
divisor

p1 p2 p

Figure 2: An example of windows and divisors. “a” and “b”
indicate the two kinds of nodes that should be excluded from
divisor collection respectively, as introduced in Section 3.2.

resub
pivot

feasible
divisor

p p

p

Figure 3: A TFO divisormay cause a cycle after resubstitution.

(line 3-5). The window then expands towards the PO by adding

new divisors that satisfy the constraint stated in Proposition 1 (line

9-10). To ensure that a divisor does not functionally depend on a

node not in 𝐶 , it is only accepted if both of its two fanins have

already been collected (line 11-12). This condition also excludes

all TFOs of the pivot 𝑛, because 𝑛 is never collected in 𝐷 . Window

expansion stops when there is no new node that can be collected

as a divisor or the limit of the number of divisors is reached. Note

that we do not explicitly maintain a data structure for the window,

since the window can be represented as 𝐷 ∪ 𝐹𝐹𝐶 \𝐶 (𝐹𝐹𝐶 and 𝐶

are constant sets) at any time during the construction of 𝐷 .

3.3 Candidate Divisor Evaluation
Once the candidate divisors are collected, we need to find out if there

exist some combinations of divisors whose function is equal to the

pivot. An intuitive way is to exhaustively try all the combinations

of the candidate divisors. However, some candidate divisors can

be trivially identified as infeasible, and there is no need to spend

much effort on them. So, the search space can be greatly reduced if

such infeasible divisors are filtered out first.

3.3.1 Candidate Filtering. We take 1-resub as an example to explain

candidate filtering. In 1-resub, two nodes might be connected by

an AND or OR gate, i.e., 𝑎 ∧ 𝑏 or 𝑎 ∨ 𝑏.2 For a candidate divisor
𝑎, it is possible that 𝑓 ≠ 𝑎 ∧ 𝑏,∀𝑏 ∈ 𝐷 . For example, suppose the

function of a pivot 𝑓 is expressed in truth table as 𝑓 = 0011, and

there are five candidates whose functions are 𝑎 = 0010, 𝑏 = 0001,

𝑐 = 1011, 𝑑 = 0111 and 𝑒 = 0101. A condition that is able to identify

an infeasible candidate using AND gate is specified in Proposition 2.

Proposition 2. Let 𝑓 be the function of the pivot node to be
replaced by a 𝑘-input AND gate, and 𝑓𝑖 is the function of the 𝑖-th input
𝑑𝑖 . Then, the resubstitution 𝑓 =

∧𝑘
𝑖=1 𝑓𝑖 is valid only if 𝑓 → 𝑓𝑖 ,∀𝑖 .

Proof. If 𝑓 ̸→ 𝑓𝑖′ , then there exists a bit 𝑗 such that 𝑓𝑗 = 1 and

(𝑓𝑖′ ) 𝑗 = 0. Hence 𝑓𝑗 ≠
∧𝑘

𝑖=1 (𝑓𝑖 ) 𝑗 and 𝑓 ≠
∧𝑘

𝑖=1 𝑓𝑖 . □

2
For brevity, the complementation of a node/function is ignored in this section, but

our discussion can be easily applied to such cases by replacing variables with literals.



DAC ’24, June 23–27, 2024, San Francisco, CA, USA Yang Sun, Tianji Liu, Martin D.F. Wong, and Evangeline F.Y. Young

Algorithm 2 Two-stage Conflict Handling

Input: Pivot set 𝑃 , feasible divisors 𝐷∗𝑝 and 𝐹𝐹𝐶𝑝 of each pivot

1: function ParCheck(pivot 𝑝 , feasible divisors 𝐷∗𝑝 , 𝐹𝐹𝐶𝑝 )

2: if 𝐶ℎ𝑎𝑛𝑔𝑒𝑂𝑓 𝐹𝐹𝐶 (𝐹𝐹𝐶𝑝 ) then return

3: if 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 (𝑝 ) then return
4: if 𝐷𝑖𝑣𝑖𝑠𝑜𝑟𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 (𝐷∗𝑝 ) then return

5: 𝑚𝑎𝑟𝑘𝐷𝑒𝑙𝑒𝑡𝑒𝑑 (𝑝, 𝐹𝐹𝐶𝑝 ) ⊲ no conflict, accept resub

6: end function
7:

8: function SeqCheck(pivot 𝑝 , feasible divisors 𝐷∗𝑝 , 𝐹𝐹𝐶𝑝 )

9: for each 𝑑 ∈ 𝐷∗𝑝 do
10: if 𝑖𝑠𝐷𝑒𝑙𝑒𝑡𝑒𝑑 (𝑑 ) then return ⊲ conflict, reject resub

11: 𝐹𝐹𝐶𝑝 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐹𝐹𝐶 (𝐹𝐹𝐶𝑝 )
12: if |𝐹𝐹𝐶𝑝 | > 𝑘 then
13: 𝑚𝑎𝑟𝑘𝐷𝑒𝑙𝑒𝑡𝑒𝑑 (𝑝, 𝐹𝐹𝐶𝑝 )
14: end function
15:

16: for each 𝑝 ∈ 𝑃 in parallel do ⊲ parallel stage

17: ParCheck(𝑝, 𝐷∗𝑝 , 𝐹 𝐹𝐶𝑝 )

18: for each 𝑝 ∈ 𝑃 do ⊲ sequential stage

19: if not 𝑖𝑠𝐷𝑒𝑙𝑒𝑡𝑒𝑑 (𝑝 ) then
20: SeqCheck(𝑝, 𝐷∗𝑝 , 𝐹 𝐹𝐶𝑝 )

21: 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ( )

A similar condition exists in the OR case: 𝑓 =
∨𝑘

𝑖=1 𝑓𝑖 is valid

only if 𝑓𝑖 → 𝑓 ,∀𝑖 . In our example, as neither 𝑓 → 𝑒 nor 𝑒 → 𝑓

holds, we conclude that any 1-resub combination involving 𝑒 is not

equal to 𝑓 , and thus 𝑒 can be filtered out in 1-resub.

3.3.2 Candidate Evaluation. Filtering-enhanced candidate evalua-

tion is specified as follows. In AND-resub, we can maintain a set

𝐷𝐴 = {𝑑𝑖 | 𝑓 → 𝑑𝑖 , 𝑑𝑖 ∈ 𝐷}, so only the combinations such as

𝑓 = 𝑎∧𝑏, 𝑎, 𝑏 ∈ 𝐷𝐴 need to be checked. A similar method can be ap-

plied to OR-resub by maintaining a set 𝐷𝑂 = {𝑑𝑖 | 𝑑𝑖 → 𝑓 , 𝑑𝑖 ∈ 𝐷}
and only those combinations of 𝑓 = 𝑎 ∨ 𝑏, 𝑎, 𝑏 ∈ 𝐷𝑂 are checked.

This technique is also applicable to 2-resub and 3-resub. For

2-resub, there are four cases:

𝑓 =


𝑎 ∨ 𝑏 ∨ 𝑐 only if 𝑎 → 𝑓 , 𝑏 → 𝑓 , 𝑐 → 𝑓 ;

𝑎 ∧ 𝑏 ∧ 𝑐 only if 𝑓 → 𝑎, 𝑓 → 𝑏, 𝑓 → 𝑐;

𝑎 ∨ (𝑏 ∧ 𝑐) only if 𝑎 → 𝑓 , (𝑏 ∧ 𝑐) → 𝑓 ;

𝑎 ∧ (𝑏 ∨ 𝑐) only if 𝑓 → 𝑎, 𝑓 → (𝑏 ∨ 𝑐).

The first two cases are essentially the same as 1-resub, except that

three divisors are chosen from 𝐷𝑂 or 𝐷𝐴 . For the last two cases,

we can apply the technique recursively, e.g., maintain a set 𝐷𝑂2 =

{𝑑𝑖 ∧ 𝑑 𝑗 | 𝑑𝑖 ∧ 𝑑 𝑗 → 𝑓 , 𝑑𝑖 , 𝑑 𝑗 ∈ 𝐷}.

3.4 Resolving Conflicts
After candidate evaluation, beneficial replacements with positive

gains in area are found for some pivot nodes. However, not all

replacements can be applied to update the AIG due to some potential

conflicts which will be introduced in Section 3.4.1. To resolve these

conflicts, we design a two-stage checking algorithm, including a

parallel and a sequential stage. Details can be found in Section 3.4.2.

1

6

32

8

7

9

4 5 1

6

32

8

7

9

4 5

7

1

6

32

8

7

9

4 5

8

1

6

32

8

7

9

4 5

7

FFC

4 Deleted Node

6 Conflict Node

Feasible Divisor

(a) Original AIG (b) Change of FFC

(c) Ancestor Deletion (d) Divisor Deletion

Figure 4: Example of conflict replacement.

3.4.1 Conflict Cases. In resubstitution, a pivot node can be re-

placed by the nodes in its feasible divisor set, and the pivot together

with its FFC will be deleted. However, on some occasions, two re-

placements can be incompatible, and at least one of them needs

to be rejected. There are three cases where replacements might be

invalid, which are illustrated in Figure 4.

Case 1: Change of FFC. If a pivot node 𝑝 has an FFC node that is

used to replace another node 𝑎, we cannot replace 𝑝 and 𝑎 simulta-

neously. For example, in Figure 4b, the replacement of node 7 needs

to use node 2, which is in the FFC of node 6. If we replace node 6

at the same time and delete its FFC, node 2 will be removed and

cannot be used to replace node 7.

Case 2: Ancestor Deletion.A pivot node 𝑝 and its ancestor 𝑎 cannot

be replaced at the same time if 𝑝 is in the FFC of 𝑎. The reason is

that by replacing 𝑎, 𝑝 will be deleted, so its replacement would be

meaningless. For instance, in Figure 4c, the replacement of node 6

is invalid if node 8 is also replaced.

Case 3: Divisor Deletion. If one of the feasible divisors of a pivot
node is deleted, the replacement will be invalid. For example, in

Figure 4d, the replacement of node 7 will delete node 3, which is a

feasible divisor of node 6, so we cannot perform the replacement

of both node 6 and 7 at the same time.

The detection of the three cases is efficient. For case 1, we can

check whether an FFC node of a pivot node 𝑝 is a feasible divisor of

another node 𝑞. If so, the replacement of 𝑝 is incompatible with that

of 𝑞. To detect case 2 of ancestor deletion, we will trace back from

a pivot node 𝑝 iteratively to its ancestor nodes as long as 𝑝 is in

the ancestor’s FFC. If an ancestor node 𝑞 has feasible divisors, the

replacement of 𝑝 is in conflict with that of 𝑞. For case 3 of divisor

deletion, there will be conflict when a pivot’s feasible divisor is

deleted. A divisor node might be deleted if one of its ancestors is

replaceable, which is similar to the detection of case 2. We will thus

traverse the feasible divisors of a pivot node, and detect ancestor

deletion. If any feasible divisor fails in the detection, a divisor

deletion is found. Note that we do not need to check for cyclic

conflicts because of Proposition 1.

3.4.2 Details of Conflict Resolving. Conflict resolving is divided

into two stages as shown in Algorithm 2. First, every pivot node

with a feasible replacement is checked in parallel. In this stage, we



Massively Parallel AIG Resubstitution DAC ’24, June 23–27, 2024, San Francisco, CA, USA

Table 1: Comparison of window-based k-resubstitution (k=2).

Benchmarks

Statistics ABC resub mockturtle aig_resub GPU resub

#Nodes Levels #Nodes Levels Time (s) #Nodes Levels Time (s) #Nodes Levels Time (s)

sixteen 16216836 140 16143196 140 235.9 16173172 140 275.3 16140545 140 5.0

twenty 20732893 162 20648660 162 317.8 20680795 162 370.2 20648313 162 6.3

twentythree 23339737 176 23249547 176 357.8 23283697 176 431.7 23249102 176 7.6

div_10xd 58620928 4372 46350336 4372 798.0 46245888 4402 1537.8 46311424 4405 22.6

hyp_8xd 54869760 24801 53232640 24801 778.2 53149696 24804 448.6 54393600 24802 25.3

mem_ctrl_10xd 47960064 114 47481856 114 631.1 47731712 114 748.9 47640576 114 10.5

log2_10xd 32829440 444 32001024 433 554.9 32043008 435 456.9 31578112 423 11.4

multiplier_10xd 27711488 274 26878976 273 394.1 26966016 273 441.1 26624000 272 8.6

sqrt_10xd 25208832 5058 21885952 5058 325.3 21013504 5900 438.6 21151744 5990 11.0

square_10xd 18927616 250 17263616 250 264.9 18396160 250 238.4 17537024 250 5.9

voter_10xd 14088192 70 9511936 65 161.5 10733568 73 136.0 9764864 69 3.9

sin_10xd 5545984 225 5372928 225 82.3 5428224 227 87.4 5354496 223 2.1

ac97_ctrl_10xd 14610432 12 14294016 12 176.1 13800448 12 862.0 13766656 12 4.4

vga_lcd_5xd 4054752 24 3809056 24 133.8 3809984 24 165.8 3810368 24 3.6

Geomean Ratio 1.000 1.000 41.9 1.009 1.021 50.3 0.998 1.014 1.0

“_𝑛xd” means that the benchmark is generated by enlarging the original one using ABC double 𝑛 times.

Table 2: Comparison of resyn2rs sequence.

Benchmarks

ABC resyn2rs GPU resyn2rs*

#Nodes Levels Time (s) #Nodes Levels Time (s)

sixteen 11970378 99 8530.2 11781381 64 63.2

twenty 15309087 86 9763.8 15106639 65 81.2

twentythree 17160203 94 11809.5 16942499 68 91.8

div_10xd 41717760 4370 12581.6 41646619 4413 381.2

hyp_8xd 52361984 24792 25026.0 53181303 24671 775.2

mem_ctrl_10xd 44986368 112 13269.5 43365698 91 403.1

log2_10xd 29893632 376 12815.1 29998592 357 339.3

multiplier_10xd 24922112 262 8505.2 24968192 262 184.2

sqrt_10xd 19584000 4968 6979.8 18688000 5927 206.6

square_10xd 16272384 248 5409.1 16237303 246 108.0

voter_10xd 8138752 57 3026.8 8220679 61 48.7

sin_10xd 5141504 175 2116.4 5143988 165 78.4

ac97_ctrl_10xd 10604544 9 2321.0 10526720 9 65.8

vga_lcd_5xd 2906272 18 2302.2 2903809 24 135.5

Geomean Ratio 1.000 1.000 46.4 0.992 0.942 1.0

* -K 10 for the last two rs commands.

first assume that all replacements are accepted. Under this assump-

tion, if a pivot does not have any conflict type introduced above

(line 2-4), we can confirm its replacement and mark its FFC (includ-

ing the pivot itself) as deleted (line 5). Conversely, if a pivot node

is not marked as deleted after the parallel checking, there might be

some conflicts with it and sequential checking is therefore needed.

In the sequential stage, we check the remaining pivot nodes (line

18-19) one by one. The sequential checking is done greedily: we

accept a replacement as long as it is feasible, i.e., all of the pivot’s

feasible divisors exist, and reject a replacement otherwise (line 9-10).

If there is no deleted feasible divisor, we could consider accepting

the replacement, and the pivot’s FFC needs to be updated (line 11)

because it might shrink as shown in Figure 4b. After that, if the

replacement is still considered beneficial (line 12), we finally confirm

the acceptance of the resubstitution and delete the updated FFC.

After every pivot having been checked, the status of the nodes

in the AIG are determined: a node can be deleted, replaced, or

unchanged. One GPU thread is then assigned to a node to update

its structure. Since all the conflicts have been resolved, the network

update can be conducted in parallel and no data race would happen.

4 EXPERIMENTAL RESULTS
The proposed parallel window-based 𝑘-resubstitution is imple-

mented using CUDA C/C++, and the experiments are conducted

on a server with Intel Xeon Silver 4114 CPU and NVIDIA GeForce

RTX 3090 GPU with 24GB DRAM. The benchmarks are selected

from the EPFL Combinational Benchmark Suite [1] including three

MtM random Boolean functions, with two control circuits from the

IWLS 2005 Benchmarks
3
. The small cases are enlarged in order to

illustrate the real performance of massive parallelization, following

the approach in [10]. Table 1 shows the statistics of the benchmarks.

We set the maximum number of new nodes during resubstitution

as 2 (i.e., 𝑘 = 2) in all the experiments unless otherwise specified.

All the results generated by our program passed combinational

equivalence checking.

4.1 Comparison of k-resubstitution
We compare our algorithm with two sequential window-based 𝑘-

resubstitution implemented in the logic synthesis tool ABC [4] and

mockturtle
4
respectively. As far as we know, there is no known

parallel implementation currently.

As shown in Table 1, GPU resubstitution on average achieves

41.9× and 50.3× acceleration over ABC and mockturtle respec-

tively. For the quality of the results, GPU resubstitution obtains the

smallest area and the second smallest delay. This indicates that our

parallel algorithm is able to significantly speed up resubstitution

while preserving high optimization qualities.

4.2 Comparison of Optimization Sequence
In order to simplify a circuit substantially, it is common in practice

to apply a sequence of different optimization algorithms rather than

performing a particular algorithm repeatedly. Hence, we test our

algorithm in the context of an ABC sequence resyn2rs, specified as:

b; rs -K 6; rw; rs -K 6 -N 2; rf; rs -K 8;

b; rs -K 8 -N 2; rw; rs -K 10; rw -z; rs -K 10 -N 2;

b; rs -K 12; rf -z; rs -K 12 -N 2; rw -z; b,

3
https://iwls.org/iwls2005/benchmarks.html

4
https://github.com/lsils/mockturtle

https://iwls.org/iwls2005/benchmarks.html
https://github.com/lsils/mockturtle


DAC ’24, June 23–27, 2024, San Francisco, CA, USA Yang Sun, Tianji Liu, Martin D.F. Wong, and Evangeline F.Y. Young

Table 3: Comparison of different divisor collection strategies.

Method Norm. #Nodes Norm. Time

ours 1.000 1.0

full+resolve_cycle 0.997 2.3

smaller_level 1.010 1.0

where b, rw, rf, rs denote AIG balancing, rewriting, refactoring and

resubstitution. The option -K and -N of rs stand for the maximum

cut size of the window, and the maximum number of inserted

nodes
5
respectively. The GPU-parallel versions of b, rw and rf are

available in the logic synthesis tool CULS
6
, so we integrate them

with GPU resubstitution and obtain a GPU-parallel resyn2rs.
The results comparing GPU versus ABC resyn2rs are shown in

Table 2. Due to insufficient GPU memory, we set -K 10 (originally
-K 12) for the last two rs in GPU resyn2rs. Under such adjustment,

GPU resyn2rs still shows superior performance over the ABC

counterpart by achieving 0.8% smaller area and 5.8% smaller delay

with 46.4× acceleration, which demonstrates the effectiveness of

the proposed algorithm in real-world logic optimization scenarios.

4.3 Divisor Collection Strategies
As introduced in Section 3.2, parallel resubstitution ensures cycle-

freeness by introducing an additional constraint during divisor

collection. In other words, some candidate divisors are not included

in our settings compared with the traditional collection method.

To investigate whether this affects the performance of resubsti-

tution, we compare our divisor collection strategy (specified in

Proposition 1) against two variants:

Variant 1 (full+resolve_cycle): the traditional divisor collection
method is used. Since this may introduce cyclic dependencies, we

additionally perform cycle detection and resolving for each node on-

the-fly during the sequential conflict checking stage (Section 3.4).

Variant 2 (smaller_level): only divisors with a smaller level than

that of the pivot will be considered. This is even stricter than our

constraint and leads to a smaller number of collected divisors. Cycle-

freeness can be guaranteed.

The performances of GPU resubstitution with these strategies

are shown in Table 3. The traditional divisor collection strategy

slightly reduces the area of the results by 0.3% compared to our

method, but resolving cycles induces a huge runtime overhead.

On the other hand, further restricting divisor collection leads to a

noticeable drop in optimization quality without any runtime benefit.

To conclude, our divisor collection strategy is a key component that

ensures efficient parallel resubstitution without sacrificing quality.

4.4 Scaling Experiments
Figure 5 shows the speedup of parallel resubstitution over ABC

on benchmarks enlarged to different sizes. Notably, even on the

original AIGs without enlargement (leftmost point of each curve)

our algorithm runs faster than ABC for all cases shown except

sqrt. In general, the acceleration ratio increases with the increasing

circuit size, but seems to saturate when there are more than 10
7

nodes which could be due to limited GPU computational resources.

5
In ABC, -N refers to the same concept as 𝑘 in our notation.

6
https://github.com/cuhk-eda/CULS

10
4

10
5

10
6

10
7

#Nodes

10
0

10
1

10
2

G
PU

 a
cc

el
er

at
io

n 
ra

tio
 v

s.
 A

BC

mem_ctrl
square
multiplier
div
hyp
sqrt

Figure 5: Result of scaling experiments.

5 CONCLUSION
In this paper, we propose an efficient GPU-parallel framework for

window-based 𝑘-resubstitution. Specifically, the procedures of divi-

sor collection and evaluation for all AIG nodes are done in parallel,

and a new strategy for divisor collection is employed which theo-

retically ensures cycle-freeness after resubstitution. Moreover, we

design an algorithm for detecting and resolving conflicts, which

prevents potential data races from happening during parallel re-

placement. On average, GPU resubstitution achieves 41.9× and

50.3× acceleration over ABC and mockturtle on large AIG bench-

marks, with comparable or better qualities. We further combine our

algorithm with other GPU logic optimization algorithms obtaining

a GPU-based resyn2rs, which speeds up the ABC counterpart by

46.4× with superior optimization quality.

REFERENCES
[1] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. 2015. The

EPFL combinational benchmark suite. In Proc. IWLS.
[2] Luca Amarú, Vinicius Possani, Eleonora Testa, Felipe Marranghello, Christopher

Casares, Jiong Luo, Patrick Vuillod, Alan Mishchenko, and Giovanni De Micheli.

2021. LUT-based optimization for ASIC design flow. In Proc. DAC. 871–876.
[3] Luca Amarú, Mathias Soeken, Patrick Vuillod, Jiong Luo, Alan Mishchenko, Janet

Olson, Robert Brayton, and Giovanni De Micheli. 2018. Improvements to Boolean

resynthesis. In Proc. DATE. 755–760.
[4] Robert K. Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-

Strength Verification Tool. In Proc. CAV.
[5] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2020. GPU-accelerated static

timing analysis. In Proc. ICCAD. 1–9.
[6] Zhuolun He, Yuzhe Ma, and Bei Yu. 2022. X-Check: GPU-accelerated design rule

checking via parallel sweepline algorithms. In Proc. ICCAD. 1–9.
[7] A. Kuehlmann, V. Paruthi, F. Krohm, and M.K. Ganai. 2002. Robust Boolean

reasoning for equivalence checking and functional property verification. IEEE
TCAD 21, 12 (2002), 1377–1394.

[8] Shiju Lin, Jinwei Liu, Tianji Liu, Martin D.F. Wong, and Evangeline F.Y. Young.

2022. NovelRewrite: node-Level parallel AIG rewriting. In Proc. DAC.
[9] Shiju Lin, Jinwei Liu, Evangeline F. Y. Young, and Martin D. F. Wong. 2023.

GAMER: GPU-accelerated maze routing. IEEE TCAD 42, 2 (2023), 583–593.

[10] Tianji Liu and Evangeline F.Y. Young. 2023. Rethinking AIG resynthesis in parallel.

In Proc. DAC. 1–6.
[11] Alan Mishchenko, Robert Brayton, Jie-Hong R Jiang, and Stephen Jang. 2011.

Scalable don’t-care-based logic optimization and resynthesis. ACM TRETS 4, 4
(2011), 1–23.

[12] Alan Mishchenko and Robert K. Brayton. 2006. Scalable logic synthesis using a

simple circuit structure. In Proc. IWLS.
[13] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. 2006. DAG-aware AIG

rewriting: a fresh look at combinational logic synthesis. In Proc. DAC. 532–535.
[14] Vinicius Possani, Yi-Shan Lu, Alan Mishchenko, Keshav Pingali, Renato Ribas,

and Andre Reis. 2018. Unlocking Fine-Grain Parallelism for AIG Rewriting. In

Proc. ICCAD. 1–8.

https://github.com/cuhk-eda/CULS

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Background
	2.2 Window-based k-resubstitution

	3 Parallel AIG Resubstitution
	3.1 Overview of Parallel Resubstitution
	3.2 Divisor Collection for Cycle-free Parallel Resubstitution
	3.3 Candidate Divisor Evaluation
	3.4 Resolving Conflicts

	4 Experimental Results
	4.1 Comparison of k-resubstitution
	4.2 Comparison of Optimization Sequence
	4.3 Divisor Collection Strategies
	4.4 Scaling Experiments

	5 Conclusion
	References

