
Rethinking AIG
Resynthesis in Parallel

Tianji Liu and Evangeline F.Y. Young

The Chinese University of Hong Kong

Outline

oMotivation

oAIG Refactoring

oBackground

oProposed Method - Parallel Refactoring

oAIG Balancing

oBackground

oProposed Method - Parallel Balancing

oExperimental Results

oSummary

Motivation

oAIG resynthesis is equipped with many algorithms

o rewrite (rw), refactor (rf), (AND-)balance (b), etc.

oDifferent algorithm applies different optimization strategy

oA commonly used AIG resynthesis flow

o(resyn2) b; rw; rf; b; rw; rw -z; b; rf -z; rw -z; b

oGPU has shown its effectiveness in accelerating rewriting

oS. Lin et al., "NovelRewrite: node-level parallel AIG rewriting," DAC 2022.

oTo fully accelerate resyn2, parallel refactor and balance are indispensable

Background - AIG Refactoring

oOptimizes the area of AIG

oResynthesize large logic cones

oBy algebraic factoring from collapsed SOPs

oUsing one cut per node to reduce time complexity

oReplace the original cone if the resynthesized cone has positive gain

a b c d a b c d

Parallel Refactoring

oBig picture

oStage 1: identify and collapse logic cones (subgraphs) that are

o (1) disjoint from each other, and

o (2) cover all the logic (non-PI nodes) in the AIG

oStage 2: resynthesize all local functions in parallel

oStage 3: replace the original cones by the resynthesized cones in parallel

a

1

5 6

8

2 3 4

b c d e f

7 9

identification

and collapsing

5

1 2

b c d

gain=1

b c d

6

3 4

c d e

gain=1

c d e

resynthesis

a b c d e f

10

14 15

7 8 9

replacement

Parallel Refactoring - Stage 1

oMaximum fanout-free cone (MFFC) of a node

oContains all the logic dedicated to driving the node

oFanout-free cone (FFC) of a node

oA logic cone that is a subset of the MFFC of the node

oProperty

oMFFCs of different nodes are either subsets of each other,
or disjoint from each other

7

4 5

1 2 3

9

6

8 MFFC

FFC 1

FFC 2

(M)FFCs of node 7

Parallel Refactoring - Stage 1

oHow to achieve the two targets of stage 1?

oLevel-wise parallel identification and collapsing

oMaintain a frontier array, initialized by all POs

oWhile there exists non-PI node in the frontier (i.e., for each level)

o Identify MFFCs rooted at each node in the frontier, one thread per node

o Gather all the inputs to the MFFCs to be the new frontier

a

1

5 6

8

2 3 4

b c d e f

7 9

before level 2

frontier: b c d e

a

1

5 6

8

2 3 4

b c d e f

7 9

before level 0

frontier: 7 8 9

a

1

5 6

8

2 3 4

b c d e f

7 9

before level 1

frontier: a 5 6 f

Parallel Refactoring - Stage 1

oA practical issue

o In refactoring, #inputs of a cone is bounded by 𝑘 to
restrict the time complexity

oWhat if an MFFC has more than 𝑘 inputs?

oOur approach

oStop identification of an MFFC when reaching 𝑘 inputs,
and thus an FFC is obtained

oTheoretical result

o It can be proved that, by doing so, the identified FFCs
by our level-wise parallel procedure are disjoint

a

1

5 6

8

2 3 4

b c d e f

7 9

identification

and collapsing

Parallel Refactoring - Stage 2

oResynthesize all local functions in parallel

oOne thread per function

5

1 2

b c d

gain=1

b c d

6

3 4

c d e

gain=1

c d e

resynthesis

Parallel Refactoring - Stage 3

oUpdate the resynthesized cones in parallel

oStart with an AIG containing

o old cones whose corresponding new cone has negative gain, and

o the cut nodes of the collapsed FFCs

o Insert the new nodes synchronously in parallel, one thread per cone

oReplace the old cone roots by the new roots

a b c d e f

5 6

7 8 9

a b c d e f

5 6

7 8 9

10

11 12 13

global sync

a b c d e f

5 6

7 8 9

10

14 15

11 12 13

global sync

a b c d e f

10

14 15

11 12 13
5→14

6→15

7→11

8→12

9→13

global sync

GPU Hash-table

oEnable logic sharing by structural hashing

oDeveloped a GPU hash-table supporting
batched node insertion and retrieval

oEnsures that only one node can exist
with a particular fanin and negation status

Key Value

c !d 10

a 5 11

5 6 12

6 8 13

c !d 14

Key Value

a 5 7

5 6 8

6 8 9

… …

Key Value

a 5 7

5 6 8

6 8 9

… …

c !d 10

insert

hash-table

a b c d e f

5 6

7 8 9

10

11 12 13

Background - AIG Balancing

oIdentify and collapse n-input AND gates with a tree structure

oRecursively balance the cut nodes, with their delays obtained

oReconstruct the cone by AND-ing the inputs with the order of ascending delay

3

1 23

9

2

7

4

5

9

8 6

a b

c

d e f g

h i

1

6

5

8

4 7

a b c

d

e

f g

h

i

6

1

2

3

4

balance

AND 3 delay delay of a node = 1 + max{delays of its fanins}

Parallel Balancing

oStage 1: identification and collapsing of n-input ANDs

oSimilar to the stage 1 of parallel refactoring, in level-wise parallel from POs to PIs

oStage 2: reconstruction of n-input ANDs

oStill in level-wise parallel (from PIs to POs)

o This is because reconstruction needs the delay of input nodes to be determined first

Experimental Results - Acceleration & QoR
oTested on enlarged benchmarks from the EPFL and IWLS 2005 Suite

oSimilar or slightly better QoR (AIG area and delay) compared with ABC

rf_resyn: b; rf; rf -z;
b; rf -z; b

Use DAC’22 GPU rewrite in

resyn2

Experimental Results - Scalability

oSpeedup with different AIG sizes on the rf_resyn script

oGPU implementation is faster than ABC when #node > 30k

Experimental Results - Runtime Breakdown

oBalancing is the bottleneck, due to its fully level-wise parallel nature

Summary

oPropose novel parallel algorithms for AIG balancing and refactoring

o14.8x and 42.7x acceleration over ABC for GPU balancing and refactoring
with better QoR

o45.9x acceleration over ABC for the commonly-used optimization script
resyn2 with comparable QoR

