WHERE
INNOVATION
BEGINS

DESIGN
AUTOMATION
CONFERENCE

Rethinking AlG
Resynthesis in Parallel

Tianji Liu and Evangeline F.Y. Young

The Chinese University of Hong Kong

°
ad XL

PO OOOOOOOOOOOOOOROOTS

"'i;x.. 5

Outline

Motivation

AlG Refactoring
Background
Proposed Method - Parallel Refactoring

AlG Balancing
Background
Proposed Method - Parallel Balancing

Experimental Results
Summary

¢

Motivation

AlG resynthesis is equipped with many algorithms
rewrite (rw), refactor (rf), (AND-)balance (b), etc.
Different algorithm applies different optimization strategy

A commonly used AlG resynthesis flow

(resyn2) b; rw; rf; b; rw; rw -z; b; rf -z; rw -z; b
GPU has shown its effectiveness in accelerating rewriting

S. Lin et al., "NovelRewrite: node-level parallel AIG rewriting," DAC 2022.

To fully accelerate resyn2, parallel refactor and balance are indispensable

Background - AlG Refactoring

Optimizes the area of AlG

Resynthesize large logic cones
o By algebraic factoring from collapsed SOPs
o Using one cut per node to reduce time complexity

Replace the original cone if the resynthesized cone has positive gain

TN "n,
a b’ ¢ “d

Parallel Refactoring

Big picture

Stage 1. identify and collapse logic cones (subgraphs) that are
(1) disjoint from each other, and
(2) cover all the logic (non-Pl nodes) in the AIG

Stage 2: resynthesize all local functions in parallel
Stage 3: replace the original cones by the resynthesized cones in parallel

c d e c o

identification
and collapsing

resynthesis replacement

Parallel Refactoring - Stage 1

Maximum fanout-free cone (MFFC) of a node
Contains all the logic dedicated to driving the node

Fanout-free cone (FFC) of a node
A logic cone that is a subset of the MFFC of the node

Property

MFFCs of different nodes are either subsets of each other,
or disjoint from each other

©
o%e ee
ojojc

(M)FFCs of node 7

MFFC

FFC 1

FFC 2

Parallel Refactoring - Stage 1

How to achieve the two targets of stage 17?

Level-wise parallel identification and collapsing
Maintain a frontier array, initialized by all POs

While there exists non-Pl node in the frontier (i.e., for each level)
|ldentify MFFCs rooted at each node in the frontier, one thread per node
Gather all the inputs to the MFFCs to be the new frontier

frontier: 7 8 9 frontier: 2 5 6 frontier:

before level O before level 1 before level 2

Parallel Refactoring - Stage 1

A practical issue

In refactoring, #inputs of a cone is bounded by k to
restrict the time complexity

What if an MFFC has more than k inputs?

Our approach
Stop identification of an MFFC when reaching k inputs,
and thus an FFC is obtained

Theoretical result

It can be proved that, by doing so, the identified FFCs
by our level-wise parallel procedure are disjoint

identification
and collapsing

Parallel Refactoring - Stage 2

Resynthesize all local functions in parallel
o One thread per function

c d e c o e

resynthesis

Parallel Refactoring - Stage 3

Update the resynthesized cones in parallel

Start with an AlG containing
old cones whose corresponding new cone has negative gain, and
the cut nodes of the collapsed FFCs

Insert the new nodes synchronously in parallel, one thread per cone

Replace the old cone roots by the new roots

5—-14
6—15
7—-11
8—12
9—13

GPU Hash-table

Enable logic sharing by structural hashing

Developed a GPU hash-table supporting
batched node insertion and retrieval

Ensures that only one node can exist
with a particular fanin and negation status

20000

(9] (o)W B V2 B N) (g}

Value

_|5
Q<

10

11

12

13

Qoo wun

14

Ke Value

<

o UL
H 0 O wn
[+4]

hash-table

s

insert

o UL

Key

o O U

Background - AlG Balancing

dentify and collapse n-input AND gates with a tree structure
Recursively balance the cut nodes, with their delays obtained

Reconstruct the cone by AND-ing the inputs with the order of ascending delay

delay of a node = 1 + max{delays of its fanins}

Parallel Balancing

Stage 1: identification and collapsing of n-input ANDs
Similar to the stage 1 of parallel refactoring, in level-wise parallel from POs to Pls

Stage 2: reconstruction of n-input ANDs
Still in level-wise parallel (from Pls to POs)
This is because reconstruction needs the delay of input nodes to be determined first

Experimental Results - Acceleration & QoR

Tested on enlarged benchmarks from the EPFL and IWLS 2005 Suite
Similar or slightly better QoR (AlG area and delay) compared with ABC

Benchmarks ABC rf_resvyn GPU rf_resyn ABC resyn2 GPU resyn2 (rwz xX2) GPU rf (x2)

#Nodes / Levels Time #Nodes / Levels Time #Nodes / Levels Time #Nodes / Levels Time #Nodes / Levels Time
twentythree 17396577 / 104 1490.4 17348255 / 98 17.3 16931332/ 72 4174.5 16915942 / 68 55.2 18397973 / 103 10.7
twenty 15514368 / 94 1359.7 15480873 / 90 15.2 15095643 / 65 3633.5 15079948 / 65 49.1 16421342 / 95 9.2
sixteen 12147445 /99 11154 12118520/ 99 13.2 11765351 / 68 2760.7 11757432 / 64 40.4 12911473 / 101 7.6
div_10xd 56788992 / 4404 2273.1 48652485 / 4373 104.7 41665780 / 4388 8028.8 41689305/ 4422 239.8 48779264 / 4422 20.5
hyp_8xd 54539008 / 24785 2104.8 54539008 / 24787 345.2 | 54193719 /7 24785 10771.1 54205696 / 24671 653.8 54539008 / 24790 32.7
mem_ctrl_10xd 46615552 / 105 3448.9 47312818 / 108 54.7 43777052 / 92 6936.8 44821695 /94 132.9 47444992 / 109 16.9 rf -Z,
log2_10xd 31011840/ 366 1434.7 31371816 7 390 34.3 20946093 / 358 48794 29966717 / 358 91.5 31552512/ 396 7.9 Z; b
multiplier_10xd 26471424 / 265 947.1 26469376 / 265 33.0 24957961 / 262 3509.3 24949760 / 262 77.5 26565632 / 265 5.5
sqrt_10xd 23618560 / 5182 3904.8 23014400 / 5174 54.8 18884491 / 6020 5639.8 18800640 / 5928 131.5 24862720 / 5365 12.4
square_10xd 17935360 / 250 606.7 17888256 / 250 22.9 17091593 / 248 2343.3 17052614 / 249 58.0 18081792 / 250 37 tein
voter_10xd 9951232 / 59 370.6 10874377 / 63 14.6 8845336 / 66 1432.4 8961831 / 60 33.2 11480064 / 66 2.5
sin_10xd 5285888 / 179 232.0 5319346 / 187 6.2 5156077 / 163 851.0 5158131/ 161 16.2 5357568 / 213 1.5
ac97_ctrl_10xd 10956800 / 11 699.6 11020147 / 9 13.5 10490213 / 10 1375.5 10660403 / 10 32.0 11144192 /7 12 34
vga_led_5xd 2018528 / 18 189.5 2946898 / 20 5.2 2903540 / 24 439.6 2903968 / 23 10.7 2052480/ 26 1.2
Geomean Ratio 1.000 / 1.000 1.0 0.996 / 1.000 2% 1.000 / 1.000 1.0 1.003 /0982 9% 0.983 /0980 27X
vs. ABC accel. accel. accel.

Experimental Results - Scalability

Speedup with different AlG sizes on the rf_resyn script
GPU implementation is faster than ABC when #node > 30k

10°F
ac97_ctrl
mem_ctrl
o .
2 square
g‘ multiplier
2 10'F © sixteen
© -
o
o)
Q
(@]
<
2
&
100;
||||4 L |||||||5 L |||||||6 | |||||||7
10 10 10 10

#Nodes

Experimental Results - Runtime Breakdown

Balancing is the bottleneck, due to its fully level-wise parallel nature

rf_resyn resyn2

twentythree N I [N T . R e e e e e b
twenty | NN N N N N NN [NN N N N W(z)
e | | | | | .| | || | | | | | (2)

div_10xd | NN I I A N I A N | 0 dedu

hyp_8xd | || I N | A N I N I N P
mem_ctrl_10xcl I [[i T . e e e e e
log2 10xd [[s . e e e e e e
multiplier_10xd I T 0 i . e e e e
sqrt_10xd | I N I I N N N N | s v
square_10xd I FE [i o . e e e e e
voter_10xd I s o i . e e e e e
sin_10xd | | NN | N N | NN N N N U (N DU
ac97_ctrl_10xd [[O . e e e e e e -

vga_lcd_5xd [N e . e e e -

0 20 40 60 80 1000 20 40 60 80 100
Percentage runtime Percentage runtime

Summary

Propose novel parallel algorithms for AlG balancing and refactoring
14.8x and 42.7x acceleration over ABC for GPU balancing and refactoring
with better QoR

45.9x acceleration over ABC for the commonly-used optimization script
resyn2 with comparable QoR

