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Abstract—The efficiency issue of logic optimization becomes critical as
the scale of VLSI designs grows. Since various algorithms are interleaved
during optimization to ensure quality, it is necessary to accelerate those
commonly used algorithms for obtaining substantial total speed-up. This
paper proposes novel parallel algorithms for AIG refactoring and AND-
balancing. Equipped with delicately designed parallel-friendly, data-
race-free frameworks and GPU data structures, our algorithms obtain
significant speed-up and enable the resyn2 sequence to be fully GPU-
parallelized when combined with GPU rewriting. Experiments show that
on large AIGs, we achieve average accelerations up to 45.9× over ABC
with comparable or better qualities.

I. INTRODUCTION

Logic optimization serves as a crucial part in logic synthesis and
VLSI design flows. In technology-independent logic optimization,
And-Inverter Graph (AIG) [1] is one of the most commonly used
logic representations because of its simplicity and flexibility. It is
equipped with a series of well-developed optimization algorithms
including but not limited to AND-balancing [2], [3], rewriting [4],
refactoring [4] and resubstitution [5], implemented in the academic
logic synthesis tool ABC [6]. The algorithms are usually assembled
into sequences which define the order they are applied to a circuit.
For example, a commonly used sequence is resyn2 (consisting
of AND-balancing, rewriting and refactoring), which also serves as
subroutines in other logic synthesis algorithms such as structural
choice computation [7] for technology mapping.

With the ever-growing scale of VLSI designs, logic optimization
has become a time-costly process. For instance, it requires nearly an
hour for running the ABC resyn2 sequence on a ten-million-node
AIG. There are works targeting at accelerating logic optimization
through parallelization, but to the best of our knowledge, they all
focus on rewriting [8], [9]. From a practical viewpoint, this is still
inadequate. Since rewriting only changes local structures, applying
rewriting exclusively leads to bad quality of results. In contrast, other
algorithms such as refactoring and AND-balancing optimize much
larger structures or perform global restructuring. Hence, to ensure
quality, different algorithms need to be applied in an interleaving
way, following an optimization sequence. Apparently, the runtime
of an optimization sequence cannot be significantly reduced if only
rewriting is accelerated. This motivates us to look into the paralleliza-
tion of other important algorithms besides rewriting.

Recently, GPUs have been extensively utilized in accelerating EDA
algorithms, e.g., global placement [10], maze routing [11], as well
as AIG rewriting in logic optimization [9]. Thanks to its specifically
designed architecture for massive parallelism, GPUs can obtain very
high data processing throughput by simultaneously executing tens of
thousands of threads scheduled by the backend driver, and it is often
observed that GPU-accelerated EDA algorithms can be much faster
than multi-threaded CPU implementations [9].

In light of these, we propose GPU-parallel algorithms for AIG
refactoring and AND-balancing. In the following, we will refer to
AND-balancing as balancing for brevity. Although the replacement
step of GPU rewriting [9] can be adopted in refactoring, the efficiency
will be significantly affected, since this step is not parallelized

in [9] due to data races. Instead, we propose a novel framework
for GPU refactoring that enables parallel replacement without data
race, and achieves high acceleration over ABC with even better
quality of results. For balancing, we reformulate the recursive and
hard-to-parallelize ABC implementation into a form that is friendly
to parallelization. We describe the algorithms without involving
details related to the underlying programming model and interface,
so theoretically they are applicable to any kind of massively parallel
processor. Our technical contributions are:

• Developing auxiliary GPU data structure and algorithms serving
as important components of GPU refactoring and balancing as
well as the infrastructure of a GPU logic optimization tool.

• Implementing the proposed parallel refactoring and balancing on
CUDA-enabled GPUs, achieving acceleration ratios of 42.7×
and 14.8× respectively over ABC on large AIG benchmarks.

• Creating a full-GPU accelerated resyn2 sequence by integrat-
ing GPU rewriting [9] with our proposed algorithms, achieving
45.9× acceleration over ABC without quality degradation.

II. PRELIMINARIES

A. Backgrounds

A Boolean network is a directed acyclic graph (DAG) in which
each node corresponds to a logic function and edges represent
input/output signals of nodes. The predecessors and successors of
a node are called the transitive fanins and transitive fanouts of the
node respectively. The direct predecessors and successors of a node
are called fanins and fanouts respectively. The primary inputs (PIs)
and primary outputs (POs) of a Boolean network are the sources and
sinks of the DAG respectively. The function at each node, taking its
fanin signals as inputs, is denoted as the local function of the node.
An And-Inverter Graph (AIG) is a Boolean network in which all
nodes are two-input AND gates with optionally complemented fanin
signals. In an AIG, the delay of a node is the length of the longest
path from any PI to this node, computed recursively as the maximum
delay of its fanin nodes plus one (the signal delay at this node). The
delay/level of an AIG is the maximum delay of all POs.

For a node n in an AIG, a cut of n is a set of nodes in the AIG
such that any path from a PI to n passes through at least one node
in the set. The logic cone associated with a cut of n includes n, and
the intersection of all the transitive fanins of n and all the transitive
fanouts of the cut nodes.

Structural hashing [5] is an implementation technique that ensures
the uniqueness of an AIG node, relying on a hash-table. Whenever a
new AND node is to be created, structural hashing checks whether a
node with the same key (two fanins with complement status) exists.
If so, the existing node will be reused for the new one.

B. AIG Optimization Algorithms

a) Sequential algorithms: Although rewriting and refactor-
ing [4] both optimize local subgraph structures, there exist significant
differences between them. In refactoring, for each AND node visited
in a topological order, one large cut is computed for the node. The
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Fig. 1: A full example for GPU refactoring.

local function taking the cut nodes as inputs is then resynthesized
following a standard factoring [12] procedure. The new subgraph
will be replaced into the AIG if the number of AIG nodes is reduced
or not increased. For rewriting, the candidate subgraphs are instead
retrieved from a pre-computed library. Besides, refactoring can handle
much larger subgraphs (cuts) than rewriting does.

For balancing [2], it aims to reduce the delay of an AIG. The core
step of balancing is essentially re-combining some internal nodes in a
certain order, thus enabling a more global structural change compared
to rewriting or refactoring. The implementation detail of balancing
in ABC [6] is provided in Section IV-A.

b) GPU-parallel rewriting: In GPU rewrite [9], the best cone
for all nodes is computed and inserted into the original AIG (if better
than the original cone) in parallel, resulting in functionally equivalent
pairs of cones rooted at some nodes. Then, for each such pair of
cones, the better one is kept, by an on-the-fly re-evaluation process
and the worse one will be deleted. This step is done sequentially
to avoid data race, but from our observations, this becomes the
bottleneck of the algorithm.

III. GPU-PARALLEL REFACTORING

As mentioned in Section II-B, in GPU rewrite [9], the replacement
step is performed sequentially. If replacement is parallelized, one
must carefully deal with the data race issues such as multiple
threads attempting to delete the same node. Sequential replacement
does not significantly affect the efficiency of GPU rewrite, but in
refactoring, the replacement step is computationally more expensive
due to larger cut and cone sizes. Experiments show that the runtime of
the sequential part is 60% longer than that of GPU rewrite, as shown
in Table I. Hence, we need a new parallel replacement method in
order to obtain significant speedup for the refactoring algorithm.

A. The Big Picture of a Novel Parallel Framework

We begin by introducing fanout-free cones and maximum fanout-
free cones, which play important roles in our refactoring framework.

Definition 1. A fanout-free cone (FFC) of a node n is a logic cone
of n (associated with any cut of n), such that for each node n′ in the
cone, any path from n′ to any PO passes through n. The maximum
fanout-free cone (MFFC) of a node n is the largest FFC of n.

An example is shown in Figure 2. It can be seen that a node may
have multiple FFCs but only one MFFC. In this work, we are not
interested in different FFCs of one node, but (M)FFCs of different
nodes. Generally speaking, the MFFC of a node contains all logic
dedicated to drive the node. For instance, in Figure 2, node 3 is not
in the MFFC of 7 since 3 also drives 6, 8 (i.e., 6, 8 are “external
fanouts” if 3 is in the cone). (M)FFCs have two important properties:

Property 1. (a) Two FFCs of two different nodes (roots) are disjoint
if one of the roots is not transitive fanin/fanout of the other. (b) If
two FFCs of two different roots overlap, then the overlapping part
contains the predecessor root.

Property 2. The MFFCs of different nodes are either subsets of each
other or disjoint from each other, i.e., they cannot partially overlap.

To derive Property 1, suppose there exists two FFCs of node n1, n2

respectively and there is a node m in both FFCs. From Definition 1,
any path from m to a PO must pass both n1 and n2, so one of them
is transitive fanout of the other. This proved Property 1a. Without
loss of generality, suppose n1 is the predecessor, then the path can
be expressed as m → n1 → n2 → o. From the definition of
logic cone, all the nodes along m → n2 (and thus n1) are in the
FFC of n2. This proved Property 1b. Property 2 is a corollary when
applying Property 1 to MFFCs.

Property 2 inspires our parallel framework whose big picture is as
follows. Instead of processing a cone for each node, we only process
a set of disjoint MFFCs which forms a partitioning of the AIG. The
reason is that the objective of refactoring is to restructure relatively
large subgraphs (more local restructuring can be done by rewriting),
and thus smaller MFFCs that are completely covered by others can
be omitted. In this way, the replacement step can be performed for
all cones in parallel without data race. As each node belongs to only
one cone, there will be no conflict during deletion. The concurrent
creation of nodes considering logic sharing can be handled by our
parallel hash-table, as specified in Section III-E.

B. Algorithm Details of GPU Refactoring

a) Collapsing stage: Our GPU refactoring starts with a collaps-
ing stage to identify a partitioning of the AIG into a set of disjoint
FFCs, in a level-wise parallel fashion from POs to PIs. Level-wise
parallel means that the cones at the same level1 will form a batch
and be processed concurrently, followed by another batch of cones
at the next level, and so on. From the viewpoint of the collapsed
network, the cones at level i+ 1 are the fanins of the cones at level
i. Figure 1a shows an example AIG containing two levels of cones.

In this stage, a frontier array is maintained that stores the roots of
the FFCs to be identified at the next level (batch), initialized as the
POs. One GPU thread is assigned for each node in the frontier to
perform intra-cone traversal, as well as to obtain the cut associated
with the identified cone. The traversal of an FFC is essentially a best-
first search from the root towards PIs, that greedily expands a node
which increases the current cut size as few as possible, and stops at
nodes with external fanouts. After all traversals are finished, the cut
node lists from each thread are gathered into a new global frontier
array to be used in the next iteration, with duplicate nodes and PIs
filtered out. This stage finishes when the frontier array is empty. Note
that FFCs instead of MFFCs are identified in the intra-cone traversal,
and we will elaborate on this issue in Section III-C.

b) Resynthesis and replacement stage: The local functions of all
the identified cones are resynthesized through truthtable computation,
Sum-of-Product generation and algebraic factoring, where one GPU
thread is assigned for one local function. The gain of each new

1The level here is not the level of an AIG defined in Section II-A.
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cone is computed, and cones with negative gain are filtered out from
replacement (Figure 1b). In the replacement stage, a parallel hash-
table (see Section III-E) is initialized containing nodes in the cones
not to be replaced, and all the cut nodes of the cones to be replaced
(they are also old roots of some other cones; Figure 1c). The insertion
of the new cones is performed iteratively through the sharing-aware
node creation to be introduced in Section III-E, where one node for
each cone is inserted concurrently in one iteration (Figure 1d-1e).
Finally, the old roots are replaced by the new roots (Figure 1f).

C. Disjointness of the Identified Cones

The reason why FFCs, instead of MFFCs (as described in Sec-
tion III-A), are identified in the collapsing stage (Section III-B) is
because we need to early-stop a cone traversal when the associated cut
size reaches the user-given maximum cut size. If this limit has never
been reached in a traversal, the MFFC will be obtained. However,
this does not harm the disjointness of the cones, as shown below.

Theorem 1. The cones identified by the collapsing stage of GPU
refactoring are all disjoint.

Proof. Assume that two FFCs Ca and Cb rooted at node a and b
constructed in the collapsing stage of GPU refactoring do overlap.
According to Property 1, node a and b must be transitive fanin
or fanout of each other and the overlapping part must contain the
predecessor node. W.l.o.g., assume that b is the transitive fanout of
a, i.e., a is the predecessor node and thus a ∈ Cb. As both Ca and
Cb are constructed, both a and b have appeared in some frontier
arrays. There are two cases. For case one, they appear in the frontier
array at the same level, or a appears at an earlier level than b. In
this case, Ca will be constructed no later than Cb, and thus a is
reached via a path that does not pass b, as shown in Figure 3. Hence
the construction of Cb will stop at (not including) node a since a
must also fanouts to a node in that path. For case two, a appears at
a later level than b. In this case, Cb will be constructed first. When
we construct Cb, node a will not be included as this will contradict
with the fact that a appears in a frontier array later on. Both cases
contradicts with Property 1 that a ∈ Cb and we can thus conclude
that Ca and Cb do not overlap.

D. Discussion on Gain Computation

Under the settings of parallel replacement, the original definition
for the gain of a resynthesized cone (number of nodes decremented
by replacing the cone individually) is no longer meaningful, since it
cannot be uniquely determined which new cone a shared node should
be assigned to when counting the number of added nodes. To address
this issue, we re-define the gain of a new cone to be the difference
between the number of deleted nodes and the nodes in the new cone,
i.e., the logic sharing among new cones is omitted. Since the old
cones are disjoint (Section III-C), the number of deleted nodes is
accurately counted. Hence, our new gain is in fact a lower bound
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of the old gain, and thus there will be no area increase by replacing
cones with non-negative new gains. In our implementation of the
gain computation, we still consider the logic sharing between new
cones and those nodes initialized in the hash-table, which makes our
evaluation process semi-sharing-aware.

E. GPU-parallel Hash-table

In order to ensure node uniqueness when creating new AND nodes,
we develop an efficient and versatile GPU-parallel hash-table that
supports batched insertion and query of key-value pairs. Compared
with the primitive hashing implementation in [9], our hash-table uses
linear probing instead of chaining for handling conflicts and thus will
benefit from memory locality more. It also supports dumping all the
key-value pairs concurrently to a consecutively stored array, which is
useful for further processing or result output. When creating a new
AND node, a shareable node can be discovered by insertion followed
by querying the same inserted key. If the retrieved value (id) is not
the inserted one, there exists the same node in the hash-table whose
id is given by the retrieved value and no new node will be inserted.

F. De-duplication and Dangling Node Removal

In practice, we found that the final AIG produced by parallel
refactoring and GPU rewriting [9] may still contain duplicate and
dangling nodes in some scenarios. If the new root of a resynthesized
cone already exists in the AIG, duplication may occur among the
fanouts of the old and new roots after replacement. Figure 4 shows
an example in which 3 and 4 become a duplicate pair after replacing
an old cone rooted at 2 by the cone rooted at 5. Dangling nodes occur
when a local function does not depend on some of its input nodes.
Although these are not common, we integrate an extra de-duplication
and dangling node cleanup pass into our parallel refactoring as well
as GPU rewriting as a final post-processing step. One GPU thread
is assigned for each node with zero fanout to remove its MFFC. For
de-duplicatation, AIG nodes are inserted and updated using our hash-
table, in level-wise parallel from PIs to POs. The reason to process
level-wise is that once some nodes are de-duplicated, there may occur
new duplicate nodes among their fanouts, as illustrated in Figure 4
where de-duplicating 2, 5 creates new duplicated nodes 3, 4.

IV. GPU-PARALLEL BALANCING

A. ABC Balancing

Balancing reduces the delay of an AIG by a recursive subroutine.
The subroutine starts with an entry node, and a cluster of nodes
rooted at the entry node is identified that (1) forms a subtree and (2)



TABLE I: Normalized sequential part runtimes of three parallel algo-
rithms. Reported times are averaged over the benchmarks in Table II.

Algorithm GPU rw [9] rf w/ seq. replace rf (proposed)

Norm. seq. time 1.0 1.6 0.6

contains no internal complemented edges and multiple fanout nodes
(e.g., cluster of 9, 8, 7 with root 9 in Figure 5a). From the functional
viewpoint, this cluster is equivalent to an n-input AND node. The
subroutine is then recursively invoked at all the inputs to this n-
input AND node. Finally, the balanced inputs with optimized delays
are iteratively combined by 2-input AND nodes in a delay-optimal
order, i.e., nodes with smaller delays are combined first. For instance,
in the subtree rooted at 9 in Figure 5b, c and 4 (with delay 0 and 1)
are combined first, followed by 3 (delay 2), 6 (delay 3). In this paper,
we use the term “subtree” and “n-input AND node” interchangeably.

B. Formulation of A Parallel-friendly Framework

ABC balancing has two main steps: identification (collapse) of
n-input AND nodes, and local AIG (subtree) reconstruction with
reordered inputs. Since the algorithm is recursive, these two steps
may interleave with each other when different parts of the AIG are
processed. For instance, in Figure 5a, the execution order is: collapse
(the tree rooted at) 9, collapse 4, reconstruct 4, collapse 3, and so on.
Such complexity, as well as the depth-first nature of the algorithm,
impedes straightforward efficient parallelization.

Two key observations lead to our effective parallel balancing
framework. First, since only the reconstruction step contributes to the
structure of the resulting AIG, we can resolve the interleaving issue
by separating the collapse and reconstruction for all subtrees into two
separate stages. Second, balancing has an important property:

Property 3. The reconstruction order of the collapsed subtrees
does not affect the delay of the resulting balanced AIG, as long as
the topological dependencies are satisfied, i.e., for any subtree, the
subtrees rooted at its inputs need to be reconstructed first.

To see this, we regard the AIG as a Boolean network in which each
node is a collapsed n-input AND gate. The reconstruction step only
manipulates local functions, so the graph structure of the network
does not change after balancing, no matter what reconstruction order
is used. Besides, it can be seen that the delay of each node is
deterministic, since the order of combining its fanins is fixed and is
the delay-optimal one (Section IV-A). The result is again irrelevant
to when a fanin node is reconstructed.

Property 3 is important because it allows us to re-arrange the
order of reconstruction of the subtrees in a parallel-friendly manner.
Specifically, we adopt the breadth-first order, which enables the
subtrees to be reconstructed in a level-wise parallel fashion. The
collapse operation is also performed in level-wise parallel and is
conceptually similar to the collapsing stage in GPU refactoring
(Section III-B).

C. Algorithm Details of GPU Balancing

GPU balancing starts with the collapse operation which is es-
sentially the same as the collapse in GPU refactoring, except that
the identified cones are subtrees whose local functions are n-input
AND gates, and there is no early-stopping during cone traversal.
An empty hash-table is then initialized and the collapsed subtrees
are reconstructed in level-wise parallel from PIs to POs. As intro-
duced in Section IV-A, the reconstruction of a subtree is essentially
combining its (already reconstructed) inputs in a delay-optimal order
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using 2-input AND nodes, which is conceptually similar to Huffman
tree construction. In our algorithm, we use a reconstruction table
to manage the intermediate nodes that remain to be combined for
each subtree in the current batch (level), which is initialized with the
fanin nodes of the subtrees (Figure 6a). During reconstruction, the
insertion of new nodes into the hash-table (i.e., iteratively combining
two intermediate nodes) is performed in parallel synchronously by a
subroutine, called an insertion pass, that concurrently creates one
new node for each subtree. Figure 6 illustrates an insertion pass
for a batch of two subtrees rooted at 4 and 6 in the AIG shown
in Figure 5. For each subtree, two nodes with minimum delays are
retrieved, and the new node combining the two is created and returned
to the reconstruction table for subsequent combination with other
nodes. The reconstruction of a subtree batch is done by repeatedly
applying insertion passes until there remains no intermediate nodes
to be combined in the batch. Note that we cannot reconstruct all
subtrees concurrently as in GPU refactoring, due to the topological
constraint stated in Property 3.

V. EXPERIMENTAL RESULTS

A. Set-up

We implement our proposed GPU refactoring and balancing in
CUDA C/C++, and the source code of GPU rewriting is obtained
from the author of [9]. The three algorithms are integrated into
a single program. Experiments are performed on an Ubuntu 18.04
server with Intel Xeon Silver 4114 CPU and NVIDIA GeForce RTX
3090 GPU that has 24 GB dedicated DRAM.

We mainly adopt the EPFL Combinational Benchmark Suite [13]
for evaluating our algorithms, and follow the approach in [8], [9]
to select and enlarge the benchmarks since most of the cases in
the benchmark suite are very small and thus the runtime will not
benefit from parallelization. Since the selected benchmarks are mostly
arithmetic circuits, we add two control circuits (also enlarged) from
the OpenCores designs in the IWLS 2005 Benchmarks [14]. Three
MtM benchmarks from the EPFL benchmark suite are also included
in our evaluation, which are random Boolean functions instead of
real circuits. The benchmark statistics are shown in Table II.

To our knowledge, there is no other parallel implementation of
balancing and refactoring, so we only compare our algorithms with
the sequential implementations in ABC. We use the ABC commands
balance, drf, drw for balancing, refactoring and rewriting. The
maximum cut size in refactoring is set as 11 for log2 (due to in-
sufficient thread-local memory) and 12 otherwise. The time reported
only consists of the running time of optimization algorithms, which
excludes the time of e.g., file I/O, initial structural hashing (in ABC).
All the generated AIGs passed equivalence checking.

B. Results

a) Single optimization: We first apply our two algorithms and
the ABC counterparts individually on the benchmarks, and the results



TABLE II: Result of single optimization algorithms by GPU (ours) vs. ABC.

Benchmarks Statistics ABC balance GPU b ABC drf GPU rf (×2)
#Nodes / Levels #Nodes / Levels Time #Nodes / Levels Time #Nodes / Levels Time #Nodes / Levels Time

twentythree 23339737 / 176 17518692 / 104 59.4 17513406 / 104 1.8 18126777 / 117 1069.4 18397973 / 103 10.7
twenty 20732893 / 162 15646118 / 94 54.6 15641552 / 94 1.6 16138461 / 110 948.5 16421342 / 95 9.2
sixteen 16216836 / 140 12250387 / 99 35.0 12246434 / 99 1.4 12617619 / 104 737.7 12911473 / 101 7.6
div 10xd 58620928 / 4372 58612736 / 4372 177.4 58598400 / 4372 20.1 57035776 / 4374 449.5 48779264 / 4422 20.5
hyp 8xd 54869760 / 24801 54869760 / 24801 185.0 54869760 / 24801 86.6 54539008 / 24801 362.3 54539008 / 24790 32.7
mem ctrl 10xd 47960064 / 114 47959040 / 114 161.3 47959040 / 114 9.2 47592448 / 114 907.8 47444992 / 109 16.9
log2 10xd 32829440 / 444 32706560 / 410 93.3 32697344 / 410 5.0 31441920 / 425 344.8 31552512 / 396 7.9
multiplier 10xd 27711488 / 274 27599872 / 266 82.9 27599872 / 266 5.9 26664960 / 272 229.6 26565632 / 265 5.5
sqrt 10xd 25208832 / 5058 25204736 / 5058 67.6 25204736 / 5058 9.3 24033280 / 5063 207.7 24862720 / 5365 12.4
square 10xd 18927616 / 250 18748416 / 250 62.9 18740224 / 250 3.6 18142208 / 250 144.8 18081792 / 250 3.7
voter 10xd 14088192 / 70 13907968 / 70 41.8 13748224 / 70 3.4 11744256 / 62 98.7 11480064 / 66 2.5
sin 10xd 5545984 / 225 5521408 / 186 16.9 5516288 / 186 0.9 5342208 / 224 53.8 5357568 / 213 1.5
ac97 ctrl 10xd 14610432 / 12 14597120 / 11 62.2 14597120 / 11 2.8 11825152 / 12 201.5 11144192 / 12 3.4
vga lcd 5xd 4054752 / 24 4053696 / 19 16.7 4053696 / 19 1.1 3236384 / 24 63.2 2952480 / 26 1.2

Geomean Ratio
vs. ABC 1.000 / 1.000 1.0 0.999 / 1.000 14.8×

accel. 1.000 / 1.000 1.0 0.983 / 0.980 42.7×
accel.

“ nxd” means that the benchmark is generated by enlarging the original one using the ABC command double n times.

TABLE III: Result of optimization sequences by GPU (ours) vs. ABC.

Benchmarks ABC rf_resyn GPU rf_resyn ABC resyn2 GPU resyn2 (rwz ×2)
#Nodes / Levels Time #Nodes / Levels Time #Nodes / Levels Time #Nodes / Levels Time

twentythree 17396577 / 104 1490.4 17348255 / 98 17.3 16931332 / 72 4174.5 16915942 / 68 55.2
twenty 15514368 / 94 1359.7 15480873 / 90 15.2 15095643 / 65 3633.5 15079948 / 65 49.1
sixteen 12147445 / 99 1115.4 12118520 / 99 13.2 11765351 / 68 2760.7 11757432 / 64 40.4
div 10xd 56788992 / 4404 2273.1 48652485 / 4373 104.7 41665780 / 4388 8028.8 41689305 / 4422 239.8
hyp 8xd 54539008 / 24785 2104.8 54539008 / 24787 345.2 54193719 / 24785 10771.1 54205696 / 24671 653.8
mem ctrl 10xd 46615552 / 105 3448.9 47312818 / 108 54.7 43777052 / 92 6936.8 44821695 / 94 132.9
log2 10xd 31011840 / 366 1434.7 31371816 / 390 34.3 29946093 / 358 4879.4 29966717 / 358 91.5
multiplier 10xd 26471424 / 265 947.1 26469376 / 265 33.0 24957961 / 262 3509.3 24949760 / 262 77.5
sqrt 10xd 23618560 / 5182 3904.8 23014400 / 5174 54.8 18884491 / 6020 5639.8 18800640 / 5928 131.5
square 10xd 17935360 / 250 606.7 17888256 / 250 22.9 17091593 / 248 2343.3 17052614 / 249 58.0
voter 10xd 9951232 / 59 370.6 10874377 / 63 14.6 8845336 / 66 1432.4 8961831 / 60 33.2
sin 10xd 5285888 / 179 232.0 5319346 / 187 6.2 5156077 / 163 851.0 5158131 / 161 16.2
ac97 ctrl 10xd 10956800 / 11 699.6 11020147 / 9 13.5 10490213 / 10 1375.5 10660403 / 10 32.0
vga lcd 5xd 2918528 / 18 189.5 2946898 / 20 5.2 2903540 / 24 439.6 2903968 / 23 10.7

Geomean Ratio
vs. ABC 1.000 / 1.000 1.0 0.996 / 1.000 39.5×

accel. 1.000 / 1.000 1.0 1.003 / 0.982 45.9×
accel.

are shown in Table II. For balancing, our GPU algorithm (denoted
by b) achieves 14.8× acceleration on average over ABC. Since GPU
balancing works in level-wise parallel, it obtains higher acceleration
on shallower AIGs than on deeper AIGs. This is understandable,
because for two AIGs with a similar number of nodes, the one
with larger level has smaller degree of parallel in each level. On
all benchmarks, the levels of the GPU balancing results are the same
as those of ABC, which is theoretically guaranteed by Property 3.

For refactoring, since the sequential algorithm updates local sub-
graphs on-the-fly in topological order, subsequent updates can benefit
from previously resynthesized cones. In parallel refactoring (as well
as GPU rewriting), there is no such benefit since all cones are
resynthesized simultaneously, which affects the result quality but it
can be caught up by repetition. Hence, we perform two passes of GPU
refactoring (denoted by rf). Under this setting, GPU refactoring still
obtains a significant acceleration of 42.7×, as well as 1.7% smaller
area and 2.0% smaller delay over ABC results. Parallel replacement
contributes a lot to such efficiency. As shown in Table I, the runtime
of the sequential part in GPU refactoring is very small, which only
consists of some post-processing procedures, and there is a high level
of parallelism in our replacement step.

Since some of the cones replaced in GPU refactoring might have
zero gain, for fair comparison, we also summarize our results (GPU

rf ×2) versus ABC refactoring with zero gain replacement enabled
(drf -z): GPU refactoring achieves 61.0× acceleration with 3.3%
smaller area and 2.5% larger delay.

b) Optimization sequence: We then inspect the proposed algo-
rithms under the settings of optimization sequences. This is more
common in practice than only applying a particular algorithm once
or repeatedly, as introduced in Section I. Since most of the opti-
mization sequences contain rewrite (rw), we create a new sequence
named rf_resyn by replacing rw in resyn with rf, in order
to exclusively reflect the runtime efficiency and result quality of
our two proposed algorithms. rf_resyn is specified as: b; rf;
rfz; b; rfz; b, where the suffix z stands for accepting zero
gain replacements. As stated previously, GPU refactoring by default
accepts zero gain replacements since the computed gain is a lower
bound. So, rfz is only meaningful for ABC, while rf and rfz make
no difference for GPU refactoring. The results in Table III confirm
that the performance of our two algorithms is consistent with that
in the single algorithm case, with an acceleration ratio of 39.5×.
In particular, GPU refactoring is only applied once instead of twice
for each rf(z) command, and this is already sufficient for GPU
rf_resyn to improve over the quality of ABC.

We further perform experiments on the well-known resyn2
sequence: b; rw; rf; b; rw; rwz; b; rfz; rwz; b, by
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integrating our algorithms with GPU rewriting [9]. Note that in
GPU resyn2 we apply two passes of rewriting with zero gain
replacement2 for each rwz, but one pass of the corresponding
algorithm for all the other commands. As shown in Table III, resyn2
is accelerated 45.9× by GPU with marginally larger area but 1.8%
better delay.3 To conclude, our GPU algorithms successfully speed up
AIG optimization flows by 40× to 46× without quality degradation.

In order to obtain insights into the runtime efficiency of our
algorithms with different problem sizes, we enlarge benchmarks to
different scales and check the acceleration ratios of GPU rf_resyn
over ABC. Figure 7 shows the result. The acceleration ratio increases
consistently with increasing problem size. When the number of
nodes is less than 30k, GPU rf_resyn may be slower than ABC,
due to GPU operation overheads. However, since modern chips can
contain billions of transistors, it is very promising for our GPU logic
optimization flow to achieve high acceleration on these large designs.

Figure 8 shows the runtime breakdown of each command in GPU
sequences. The runtime of de-duplication and dangling node removal
(denoted by dedup) is separated from rw and rf. It can be seen
that b occupies a large proportion of total runtime (especially in
rf_resyn) though sequential balancing is much more efficient
than sequential rewriting and refactoring, indicating the significant
speedup by GPU rw and rf. In particular, for benchmarks with
large delays, the runtimes of b and dedup become significant, due
to their level-wise parallel nature.

VI. CONCLUSION

In this paper, we presented GPU-parallel refactoring and AND-
balancing for AIG optimization. We proposed a novel refactoring

2Zero gain replacement is not considered in [9], so we slightly modified
their code on some conditions without changing the algorithmic framework.

3Due to the system-related non-determinism in CUDA thread execution
order, there is a very slight variation in the area of the results, measured to
be less than 0.001% on average (by repeating GPU resyn2 five times). No
variation in the delay of the results is observed. This phenomenon is also
reported in [8] for parallel rewriting.

framework in which the replacements of local subgraphs are per-
formed in parallel without data race. Specifically, a partition of the
AIG consisting of only fanout-free cones is obtained and all cones are
resynthesized and replaced simultaneously. For GPU AND-balancing,
the AIG is processed level-by-level, where subtree structures of
the AIG within the same level are identified and reconstructed
concurrently. Furthermore, we enabled the resyn2 sequence to
be fully GPU-accelerated, by integrating our two algorithms with
GPU rewriting. Experiments showed that our GPU refactoring, AND-
balancing, and resyn2 implementation on CUDA-enabled GPU
achieved acceleration ratios of 42.7×, 14.8× and 45.9× over ABC
with comparable or better quality of results. Future work includes
parallelizing the resynthesis process for each cone or introducing
new resynthesis methods in refactoring, and parallelizing more logic
optimization algorithms such as resubstitution.
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