FineMap: A Fine-grained
GPU-parallel LUT Mapping Engine

Tianji Liu, Lei Chen, Xing Li, Mingxuan Yuan, Evangeline F.Y. Young

fi ,
UHEMW &,
OWERE o = %

T
b

O [

L K%

e Chinese University of Hong Kong

Outline

= Motivation
= Background

= GPU LUT mapping engine
= Fine-grained Parallel Mapping
= Local Area Evaluation
= Dynamic Memory Management
= Parallel Timing Analysis & Cut Expansion

= Experimental Results

= Summary

Jan 24, 2024

Motivation

= Logic synthesis becomes time demanding

= Large-scale designs
= High-effort optimization flows for better QoR

= LUT mapping is widely used in modern synthesis flows

= Necessary for FPGA design

= Also adopted in high-effort tech-independent optimization flows, e.g.,
ABC &deepsyn, LUT-based optimization [1]

= Previous works on parallel LUT mapping show limited performance

[1] L. Amaru et al., "LUT-based optimization for ASIC design flow", Proc. DAC'21.

Background - LUT Mapping

= Objective

= Transform a Boolean network (e.g., AlG)
Into a k-input LUT network

= Minimize LUT count (area) & level (delay)

= Common approach

= Assign each node a representative cut a b de f g
= Select a subset of representative cuts s.t. their cones LUT in the mapping
cover the entire network LUT not in the mapping

*selected nodes: 3, 4, 6, 9

Background - LUT Mapping

= Flow of state-of-the-art LUT mapper (DHD} A~ Eh @ﬂ‘;’;‘;ﬁ;‘e“ted

= Multiple mapplng phases”, AL EL AL ELA Area-oriented
delay- or area-oriented mapping
= Cut expansion phase Sa L E *ggsest;?:::g;:zuz;i:se E | cut expansion

= Each phase incrementally improves the mapped network

= A timing analysis pass after each mapping/cut expansion phase
= Compute the required time of each node

Fine-grained Parallel Mapping

= What needs to be computed in a mapping phase?
= For each node n, a priority cut set P(n). The representative cut is the bestin P(n)

= P(n) = the trivial cut {n} + the best C cuts in the candidate cut set E(n)
= The candidate cuts (maximally (C + 1)? cuts) are computed by cut enumeration:
E(n)={uvv : ue P(faninO(n)),v € P(faninl(n)), luuv| <k}
= The candidate cut ranking is evaluated by cut metrics
= cut delay, area-flow and exact area

= Previous work on GPU LUT mapping [2] (FPL'10)

= Coarse-grained, level-wise parallel
= Only the mapping phase is parallelized eeti- (Y () ()

leveli + 1

[2] D. Chen and D. Singh, "Parallelizing FPGA technology mapping using
Graphics Processing Units (GPUs)", Proc. FPL'10.

Fine-grained Parallel Mapping

* Fine-grained approach for one node evel 141

= (C + 1)? threads for each node at this level level i

= Each thread enumerates and evaluates one
candidate cut of E(n)

= Challenge 1: select the top-C from (C + 1)? cuts
= Perform parallel reduction C times
= After each iteration, mask out the selected best one
= Experimentally, much faster than parallel sorting

Fine-grained parallel

Fine-grained Parallel Mapping

= Challenge 2: filter out dominated cuts

= |f a candidate cut is a superset of (dominated by) another, it should be filtered out
= Parallel checking the dominance of all the other cuts against the selected one

\ NN\ j
candidate

Cl 1 Cl+1 cuts

SUb? 0/1 parallel
set: ‘ reduce OR

=1, ¢; dominated
=0, ¢; non-dominated

Fine-grained Parallel Mapping

if tid = 0 then P(n) « {RC(n)}

sync_threads() > synchronizing the (C' + 1)? threads RC(n) the first (best) cut in P(n)

Algorithm 1 Fine-grained Parallel Mapping (Per-thread) 10: while |P(n)| < C do top-C selection
Inout: AIG node n. max cut size k. thread id tid 11: cp, < reduceBest(c,valid and !selected) > parallel reduction
P " k) ! 12: if ¢, = () then break > no valid and non-selected cut left
Updates: priority cut set P(n), representative cut RC'(n) . : o :
I: co <« getCut(P(fanino(n)), tid / (C + 1)) _ 13: if valid and ¢ # ¢;, then f < isSubset(c,c;,) dominance
2: ¢ + getCut(P(faniny(n)),tid % (C + 1)) enumerat_lon & 14 sz o froiice checking
_ evaluation 15 dom < reduceOr(f) > parallel reduction
3 ecoUer 16: if tid = 0 and !dom then P(n) < P(n)Uc
. . : . i Tt . 5 Al — LAC) Cp
i-' llfafl((i ;(Tt(l;;]n# Yl @ 72 2l o] < il stelesied = el 17: if ¢ = ¢, then selected < true > mask out ¢,
5: if valid
0: Compute the delay, area-flow or exact area of ¢ 18: _ :syvzc_thread.s()
7: if de(¢) > treq(n) then valid < false 19: if tid = 0 then o
8- 20: P(n) <~ P(n)u{n} > add the trivial cut
9:

Jan 24, 2024 9

Local Area Evaluation in Parallel Settings

= Ref count of a node: #fanouts in the current mapped LUT network

= (de)reference a cut (LUT)
= Ref: recursively add (reference) all the LUTs needed to drive the LUT
= Deref: recursively remove (dereference) all the LUTs dedicated to driving the LUT

= Exact area of a cut: #LUTs traversed during (de)ref

(a) (c)

ref 9
(7) Taeany S
SORY OO I OR3

ait 1b 1d 1e 1f 18 ao ob 1& 1e 1f 18 ai1b 1d 1e 1f 18

1 ref count updated ref count LUT added

LUT removed

10

Local Area Evaluation in Parallel Settings

= Challenge 1: data race during concurrent exact area computation
= Multiple threads attempts to manipulate a single ref count

= Data-race-free solution

= Each thread records a copy of its updated ref counts in thread-local memory
= The original ref counts are saved in global memory, read-only

0 9 {4, c, 3, 6} a 9 A . {4,6,3,h,i} 0
e C.. F O OC.. 9 h1 .il Q C"

al 1b 1d 1e 1f 18 ao ob 1d 1e 1f 18 al1b 1d 1e 1f 18
1 original ref count (global mem)
Thread 1 updated ref count (local mem) Thread 2

LUT added

11

Local Area Evaluation in Parallel Settings

= Challenge 2: some candidate cuts having very large exact areas
= Lead to slow execution of some threads, and insufficient thread-local memory

= Original exact area evaluation strategy
= Deref original representative cut c first, then ref candidate cut (under eval) ¢’

= Our new strategy

= Ref ¢’ first, then deref ¢
= Local area metric = #LUTs traversed during ref ¢’ - #LUTs traversed during deref ¢

original new
strategy strategy

deref ¢ ref ¢’ Traversed ref ¢’ deref ¢ Traversed
Area Area

Jan 24, 2024 12

Dynamic Memory Management

= Priority cut sets require huge amount of memory
= Allocating all the cut sets at once leads to OOM on GPUs

= GPU memory pool for managing cut sets
= Functionalities: batched alloc, batched dealloc (free), defragmentation (gc)
= All implemented by GPU-parallel algorithms

alloc dealloc
—_— —_—

unallocated ldefrag

active

. . alloc
Inactive ——

13

Dynamic Memory Management

= Cut set (de)allocation scheme
= The level to allocate the cuts for node n = n. level

= The level to deallocate n = max n'.level
n'efanout(n)

= Perform batched allocation and deallocation once respectively per-level

= Reduction on memory footprint
= On our largest case: 39.3GB (alloc once) — 6.7GB (mem pool), 5.9x reduction

= Runtime overhead
= On average: <3% of total runtime

14

Parallel Timing Analysis

= Updates the required time of each node
= During mapping, a candidate cut will be rejected if its delay exceeds the required time

= Top-down propagation
Lreq (n) = min (treq (n') — 1)

n’elut_fanout(n)

= Parallel case
= Perform the top-down propagation through reversed level-wise parallel sweeping

15

Parallel Cut Expansion

= Expands the representative cuts towards Pls and enable LUT sharing

= [teratively replace a node n' in a cut of n with its two fanins ng, ny, if

= n’ exclusively drives n in the mapping; and
{4, e}

= ngy,n; also drives other LUTs in the mapping .
expand 5

= Parallel case
= All the expansions are performed concurrently

» _ _ a bc d e a bc d e
= An additional level-wise parallel sweeping of all HLUTs = 5 HLUTs =4
nodes to commit/reject the updates, along with LUT in the mapping

recomputing delay and checking the required time

16

Experimental Results

= Tested on enlarged benchmarks from the EPFL and IWLS'05 Suite
= 128.7x acceleration over the ABC if mapper, with slightly better QoR

AIG Statistics ABC if FineMap (Ours)
Benchmarks

#AIG Nodes Levels #LUTs Levels Time #LUTs Levels Time
twentythree 23339737 176 6659071 36 23228 6646639 36 71.3
twenty 20732893 162 5929939 33 18884 5927717 33 494
sixteen 16216836 140 4486446 29 13583 4471454 29 37.1
div_10xd 58620928 4372 | 22559744 864 4100.5 | 22793216 864 23.2
hyp_8xd 54869760 24801 11392768 4194 3862.1 | 11461888 4194 23.5
mem_ctrl_10xd 47960064 114 | 12386304 25 2560.6 | 12402688 25 11.5
log2_10xd 32829440 444 8200192 77 2462.3 8056832 77 10.6
multiplier_10xd 27711488 274 6054912 53 1869.2 6000640 53 8.4
sqrt_10xd 25208832 5058 5857280 1033 1778.5 5919744 1033 11.1
square_10xd 18927616 250 4080640 50 13358.5 4007936 50 5.8
voter_10xd 14088192 70 2885632 17 760.9 2890752 17 4.2
sin_10xd 5545984 225 1492992 42 401.4 1483776 42 2.2
ac97_ctrl_10xd 14610432 12 2992128 + 441.4 2998272 + 3.2
vga_lcd_5xd 4054752 24 910912 7 191.6 910976 7 1.5

Jan 24, 2024 Geomean Ratio 1.000 1.000 128.7 0.998 1.000 1.0 17

Experimental Results

= Comparison against the previous work FPL'10 on GPU LUT mapping

LUT mapping flow Mapping Timing Analysis Cut Expansion
FPL'10 full-flow (est.) coarse-grained par. ABC (sequential) ABC (sequential)
Ours fine-grained par. parallel parallel
twentythree I]
fwenty)
sixteen I —_—
div_10xd]
hyp_8xd I I
mem_ctrl_T0xd I
[0g2_ 10Xl 1 S |
multiplier_10xd -]
sqrt_10xd I —]
square_10xd I —_—]
voter_10xd IE— ————
sin_10xd I |
ac97_ctr_10xd I —_—
vga_lcd 5xd I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 350 5 10 15 20 25
(a) Acceleration ratio (b) Acceleration ratio

mapping func. only: 2.3x full-flow: 13.2x
Jan 24, 2024 18

Experimental Results

= Scaling experiments ~co7 o
trl
= Even on small benchmarks, 3 10" an
our GPU mapper is faster than ABC ¢ multplr
S div
S
”‘f.i; 10" F
)
10 S e e et e
10* 10° 10° 10’

Jan 24, 2024 19

Summary

= Propose an ultra-fast GPU LUT mapping engine, consisting of

= fine-grained parallel mapping, with a new local area evaluation strategy and
dynamic memory management methods

= parallel cut expansion and timing analysis

= Achieve 128.7x acceleration over ABC with slightly better QoR

20

	Slide 1: FineMap: A Fine-grained GPU-parallel LUT Mapping Engine
	Slide 2: Outline
	Slide 3: Motivation
	Slide 4: Background - LUT Mapping
	Slide 5: Background - LUT Mapping
	Slide 6: Fine-grained Parallel Mapping
	Slide 7: Fine-grained Parallel Mapping
	Slide 8: Fine-grained Parallel Mapping
	Slide 9: Fine-grained Parallel Mapping
	Slide 10: Local Area Evaluation in Parallel Settings
	Slide 11: Local Area Evaluation in Parallel Settings
	Slide 12: Local Area Evaluation in Parallel Settings
	Slide 13: Dynamic Memory Management
	Slide 14: Dynamic Memory Management
	Slide 15: Parallel Timing Analysis
	Slide 16: Parallel Cut Expansion
	Slide 17: Experimental Results
	Slide 18: Experimental Results
	Slide 19: Experimental Results
	Slide 20: Summary

