
FineMap: A Fine-grained
GPU-parallel LUT Mapping Engine

Tianji Liu, Lei Chen, Xing Li, Mingxuan Yuan, Evangeline F.Y. Young

Jan 24, 2024 1

Outline

▪ Motivation

▪ Background

▪ GPU LUT mapping engine

▪ Fine-grained Parallel Mapping

▪ Local Area Evaluation

▪ Dynamic Memory Management

▪ Parallel Timing Analysis & Cut Expansion

▪ Experimental Results

▪ Summary

Jan 24, 2024 2

Motivation

▪ Logic synthesis becomes time demanding

▪ Large-scale designs

▪ High-effort optimization flows for better QoR

▪ LUT mapping is widely used in modern synthesis flows

▪ Necessary for FPGA design

▪ Also adopted in high-effort tech-independent optimization flows, e.g.,

ABC &deepsyn, LUT-based optimization [1]

▪ Previous works on parallel LUT mapping show limited performance

Jan 24, 2024 3

[1] L. Amaru et al., "LUT-based optimization for ASIC design flow", Proc. DAC'21.

Background - LUT Mapping

▪ Objective

▪ Transform a Boolean network (e.g., AIG)

into a k-input LUT network

▪ Minimize LUT count (area) & level (delay)

▪ Common approach

▪ Assign each node a representative cut

▪ Select a subset of representative cuts s.t. their cones

cover the entire network

Jan 24, 2024 4

3

1 2

7

4

5

9

8 6

b

c

d e f g
h i

LUT in the mapping

LUT not in the mapping

*selected nodes: 3, 4, 6, 9

a

Background - LUT Mapping

▪ Flow of state-of-the-art LUT mapper

▪ Multiple “mapping phases”,

delay- or area-oriented

▪ Cut expansion phase

▪ Each phase incrementally improves the mapped network

▪ A timing analysis pass after each mapping/cut expansion phase

▪ Compute the required time of each node

Jan 24, 2024 5

*one timing analysis
pass after each phase

D

A

E

Delay-oriented
mapping

Area-oriented
mapping

Cut expansion

D D A E

A EA E

A E

Fine-grained Parallel Mapping

▪ What needs to be computed in a mapping phase?

▪ For each node 𝑛, a priority cut set 𝑃(𝑛). The representative cut is the best in 𝑃(𝑛)

▪ 𝑃(𝑛) = the trivial cut {𝑛} + the best 𝐶 cuts in the candidate cut set 𝐸(𝑛)

▪ The candidate cuts (maximally 𝐶 + 1 2 cuts) are computed by cut enumeration:

𝐸 𝑛 = {𝑢 ∪ 𝑣 ∶ 𝑢 ∈ 𝑃 𝑓𝑎𝑛𝑖𝑛0 𝑛 , 𝑣 ∈ 𝑃 𝑓𝑎𝑛𝑖𝑛1 𝑛 , 𝑢 ∪ 𝑣 ≤ 𝑘}

▪ The candidate cut ranking is evaluated by cut metrics

▪ cut delay, area-flow and exact area

▪ Previous work on GPU LUT mapping [2] (FPL’10)

▪ Coarse-grained, level-wise parallel

▪ Only the mapping phase is parallelized

Jan 24, 2024 6

… … … … … … …

…

level

level

level +

1 thd 1 thd 1 thd

[2] D. Chen and D. Singh, "Parallelizing FPGA technology mapping using

Graphics Processing Units (GPUs)", Proc. FPL’10.

Fine-grained Parallel Mapping

▪ Fine-grained approach for one node

▪ 𝐶 + 1 2 threads for each node at this level

▪ Each thread enumerates and evaluates one

candidate cut of 𝐸(𝑛)

▪ Challenge 1: select the top-𝐶 from 𝐶 + 1 2 cuts

▪ Perform parallel reduction 𝐶 times

▪ After each iteration, mask out the selected best one

▪ Experimentally, much faster than parallel sorting

Jan 24, 2024 7

… … … … … … …

…

level

level

level +

1 thd 1 thd 1 thd

Coarse-grained parallel

Fine-grained parallel

… … … … … … …

…

level

level

level +

𝐶 + 1 2

thds
𝐶 + 1 2

thds
𝐶 + 1 2

thds

Fine-grained Parallel Mapping

▪ Challenge 2: filter out dominated cuts

▪ If a candidate cut is a superset of (dominated by) another, it should be filtered out

▪ Parallel checking the dominance of all the other cuts against the selected one

Jan 24, 2024 8

… …

sub
set?

0/1 0/1 0/1 parallel
reduce OR

=1, dominated
=0, non-dominated

candidate
cuts

Fine-grained Parallel Mapping

Jan 24, 2024 9

enumeration &

evaluation

dominance

checking

top-C selection

3

1 2

7

4

5

9

8 6

a b

c

d e f g
h i

1

2

2

1 ref count

1

1

1 1 1 1 1

1 1

3

1 2

7

4

5

9

8 6

a b

c

d e f g
h i

1

1

1 updated ref count

0

0

0 1 1 1 1

1 1
0

LUT removed

deref 9

(b) (c)(a)

ref 9

{4,c,3,h,i} 3

1 2

7

4

5

9

8 6

a b

c

d e f g
h i

2

1

1

1

1 1 1 1 1

2 2
1

LUT added

Local Area Evaluation in Parallel Settings

▪ Ref count of a node: #fanouts in the current mapped LUT network

▪ (de)reference a cut (LUT)

▪ Ref: recursively add (reference) all the LUTs needed to drive the LUT

▪ Deref: recursively remove (dereference) all the LUTs dedicated to driving the LUT

▪ Exact area of a cut: #LUTs traversed during (de)ref

Jan 24, 2024 10

Local Area Evaluation in Parallel Settings

▪ Challenge 1: data race during concurrent exact area computation

▪ Multiple threads attempts to manipulate a single ref count

▪ Data-race-free solution

▪ Each thread records a copy of its updated ref counts in thread-local memory

▪ The original ref counts are saved in global memory, read-only

Jan 24, 2024 11

3

1 2

7

4

5

9

8 6

a b

c

d e f g
h i

1

2

2

1 original ref count (global mem)

1

1

1 1 1 1 1

1 1

3

1 2

7

4

5

9

8 6

a b

c

d e f g
h i

1

1

1 updated ref count (local mem)

0

0

0 1 1 1 1

1 1
0

ref 9
{4, c, 3, 6}

ref 9

{4,c,3,h,i} 3

1 2

7

4

5

9

8 6

a b

c

d e f g
h i

2

1

1

1

1 1 1 1 1

2 2
1

LUT added

Thread 1 Thread 2

Local Area Evaluation in Parallel Settings

▪ Challenge 2: some candidate cuts having very large exact areas

▪ Lead to slow execution of some threads, and insufficient thread-local memory

▪ Original exact area evaluation strategy

▪ Deref original representative cut first, then ref candidate cut (under eval) ’

▪ Our new strategy

▪ Ref ’ first, then deref

▪ Local area metric = #LUTs traversed during ref ’ - #LUTs traversed during deref

Jan 24, 2024 12

deref 𝒄 ref 𝒄′ Traversed

Area

ref 𝒄′ deref 𝒄 Traversed

Area

original

strategy

new

strategy

Dynamic Memory Management

▪ Priority cut sets require huge amount of memory

▪ Allocating all the cut sets at once leads to OOM on GPUs

▪ GPU memory pool for managing cut sets

▪ Functionalities: batched alloc, batched dealloc (free), defragmentation (gc)

▪ All implemented by GPU-parallel algorithms

Jan 24, 2024 13

alloc dealloc

unallocated

active

inactive

defrag

alloc

Dynamic Memory Management

▪ Cut set (de)allocation scheme

▪ The level to allocate the cuts for node 𝑛 = 𝑛. 𝑙𝑒𝑣𝑒𝑙

▪ The level to deallocate 𝑛 = max
𝑛′∈𝑓𝑎𝑛𝑜𝑢𝑡 𝑛

𝑛′. 𝑙𝑒𝑣𝑒𝑙

▪ Perform batched allocation and deallocation once respectively per-level

▪ Reduction on memory footprint

▪ On our largest case: 39.3GB (alloc once) → 6.7GB (mem pool), 5.9x reduction

▪ Runtime overhead

▪ On average: <3% of total runtime

Jan 24, 2024 14

Parallel Timing Analysis

▪ Updates the required time of each node

▪ During mapping, a candidate cut will be rejected if its delay exceeds the required time

▪ Top-down propagation

𝑡𝑟𝑒𝑞 𝑛 = min
𝑛′∈𝑙𝑢𝑡_𝑓𝑎𝑛𝑜𝑢𝑡 𝑛

𝑡𝑟𝑒𝑞 𝑛
′ 1

▪ Parallel case

▪ Perform the top-down propagation through reversed level-wise parallel sweeping

Jan 24, 2024 15

1 2

3 4

5

a b c d e

expand 5

1 2

3 4

5

a b c d e

{4, e} {1, 2, e}

LUT in the mapping

#LUTs = 5 #LUTs = 4

Parallel Cut Expansion

▪ Expands the representative cuts towards PIs and enable LUT sharing

▪ Iteratively replace a node 𝑛′ in a cut of 𝑛 with its two fanins 𝑛0
′ , 𝑛

′ , if

▪ 𝑛′ exclusively drives 𝑛 in the mapping; and

▪ 𝑛0
′ , 𝑛

′ also drives other LUTs in the mapping

▪ Parallel case

▪ All the expansions are performed concurrently

▪ An additional level-wise parallel sweeping of all

nodes to commit/reject the updates, along with

recomputing delay and checking the required time

Jan 24, 2024 16

Experimental Results

▪ Tested on enlarged benchmarks from the EPFL and IWLS’05 Suite

▪ 128.7x acceleration over the ABC if mapper, with slightly better QoR

Jan 24, 2024 17

Experimental Results

▪ Comparison against the previous work FPL’10 on GPU LUT mapping

Jan 24, 2024 18

LUT mapping flow Mapping Timing Analysis Cut Expansion

FPL’10 full-flow (est.) coarse-grained par. ABC (sequential) ABC (sequential)

Ours fine-grained par. parallel parallel

mapping func. only: 2.3x full-flow: 13.2x

Experimental Results

▪ Scaling experiments

▪ Even on small benchmarks,

our GPU mapper is faster than ABC

Jan 24, 2024 19

Summary

▪ Propose an ultra-fast GPU LUT mapping engine, consisting of

▪ fine-grained parallel mapping, with a new local area evaluation strategy and

dynamic memory management methods

▪ parallel cut expansion and timing analysis

▪ Achieve 128.7x acceleration over ABC with slightly better QoR

Jan 24, 2024 20

	Slide 1: FineMap: A Fine-grained GPU-parallel LUT Mapping Engine
	Slide 2: Outline
	Slide 3: Motivation
	Slide 4: Background - LUT Mapping
	Slide 5: Background - LUT Mapping
	Slide 6: Fine-grained Parallel Mapping
	Slide 7: Fine-grained Parallel Mapping
	Slide 8: Fine-grained Parallel Mapping
	Slide 9: Fine-grained Parallel Mapping
	Slide 10: Local Area Evaluation in Parallel Settings
	Slide 11: Local Area Evaluation in Parallel Settings
	Slide 12: Local Area Evaluation in Parallel Settings
	Slide 13: Dynamic Memory Management
	Slide 14: Dynamic Memory Management
	Slide 15: Parallel Timing Analysis
	Slide 16: Parallel Cut Expansion
	Slide 17: Experimental Results
	Slide 18: Experimental Results
	Slide 19: Experimental Results
	Slide 20: Summary

