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Abstract—Lookup-table (LUT) mapping is an indispensable step in
FPGA design flows, and also serves as a building block in many
technology-independent optimization algorithms. Therefore, it is crucial
to accelerate LUT mapping in order to satisfy the demand for synthesiz-
ing high-quality, large-scale VLSI designs. Previous work on GPU LUT
mapping suffers from low speedup due to limited degree of parallelism. In
this paper, we propose an ultra-fast GPU-parallel LUT mapping engine
named FineMap, which is composed of a novel fine-grained mapping
phase with a high degree of parallelism, a parallel cut expansion phase
and a parallel timing analysis pass. The mapping phase is enhanced by
specifically tailored cut evaluation and memory management algorithms
for GPUs that enable fast mapping of large circuits with limited GPU
memory. Experiments show that compared with the high-performance
mapper implemented in ABC, FineMap achieves 128.7× speedup with
better quality in terms of area on large benchmarks.

I. INTRODUCTION

Technology mapping is a crucial step in logic synthesis. Dur-
ing technology mapping, a circuit represented in a technology-
independent format (e.g., And-Inverter Graph, AIG) is transformed
into a technology-dependent representation in which the circuit is
realized by standard cells (for ASICs) or k-input lookup-tables (k-
LUTs, for FPGAs). In particular, the algorithm for mapping into
k-LUTs (or LUT mapping) has been widely adopted in modern
logic synthesis flows as a fundamental building block, besides its
typical usage as a mapper in an FPGA design flow. For example, in
some logic optimization algorithms [1], [2], LUT mapping acts as a
technology-independent optimizer in which the costs are computed
from the technology-independent point of view, making it also
applicable in ASIC design flows.

With the increasing scale and complexity of VLSI designs, logic
synthesis algorithms including LUT mapping have become highly
time-consuming [3]. Meanwhile, in order to obtain good quality
designs, there emerges high-effort logic synthesis flows in which LUT
mapping plays an important role and can be invoked many times. For
instance, in [2], optimization algorithms including LUT mapping are
repeatedly applied to a circuit for incrementally improving its area.
In [4], LUT mapping is used as an evaluator to guide the exploration
of logic transformation sequences for FPGA synthesis. Such extensive
and frequent usage makes LUT mapping an important candidate to be
accelerated, which enables synthesizing large-scale designs by high-
effort algorithms within practical time budgets.

There have been previous works on accelerating LUT mapping
through parallelization [4]–[6], which can be classified into two
categories: partition-based and data-parallel mapper. In a partition-
based mapper, the circuit is split into several parts, and each part
is mapped individually into a small LUT network. The final mapped
network is obtained by reassembling all the small networks. Although
the partition-based methods are flexible, they suffer from both limited
acceleration and quality: in order to achieve high speedup, the number
of partitions needs to be sufficiently large, but this in turn leads
to quality degradation, since the optimization opportunities during
mapping are restricted in small local subgraphs [4]. Moreover, the

overhead of partitioning and reassembling becomes more significant
with the increasing number of partitions.

A more promising paradigm for accelerating LUT mapping is data-
parallelism. This is because data-parallel algorithms can be efficiently
executed on GPUs which are powerful massively parallel processors,
and we have witnessed many successful applications of GPUs in
the field of EDA [7]–[9]. A typical GPU-parallel algorithm relies on
many threads and each thread usually processes a small sub-problem
of a constant size (e.g., one element in an array, or one node in a
graph). The design of GPU architecture enables tens of thousands of
threads to be scheduled and executed concurrently, which is infeasible
on multi-core CPUs due to large threading overhead. However, it is
non-trivial to design data-parallel algorithms that can exploit the full
power of GPUs. For example, the GPU LUT mapper proposed in [5]
only makes use of a coarse-grained parallelization opportunity that
originates from the AIG structure and ignores the opportunities reside
in the computation patterns of mapping, so there is still room for
obtaining further speedup. We will further discuss [5] in Section II-C.

This paper presents a fully GPU-accelerated data-parallel LUT
mapping engine named FineMap. FineMap is equipped with a novel
fine-grained parallel mapping algorithm, as well as parallel cut
expansion and timing analysis which are important components of
a LUT mapper. Specifically, the contributions of this paper are:

• An ultra-fast, highly parallel mapping algorithm exploiting par-
allelization opportunities reside in both the global AIG structure
and the computation patterns of processing a single AIG node.

• A new cut evaluation strategy that guarantees determinism and
improves the efficiency of mapping.

• A dynamic memory management scheme enabled by a specif-
ically designed GPU-based memory pool for the storage of
priority cut sets.

• Parallel cut expansion and timing analysis algorithms for fully
accelerating the overall mapping flow.

We conduct extensive experiments to evaluate the performance
of the proposed LUT mapping engine. Compared with the high-
performance LUT mapper implemented in the academic logic synthe-
sis tool ABC [10], FineMap achieves an averaged overall acceleration
ratio of 128.7× with slightly better quality-of-results.

The rest of the paper is organized as follows. Section II introduces
some backgrounds and reviews the previous work on GPU LUT
mapping. Section III describes our LUT mapping engine. Section IV
shows the experimental results. Section V concludes the paper.

II. PRELIMINARIES

A. Backgrounds

A Boolean network is a directed acyclic graph (DAG) represen-
tation of a combinational circuit in which each node corresponds to
a Boolean function and edges represent input/output signals of the
nodes. The transitive fanins and transitive fanouts of a node are the
predecessors and successors of the node respectively. In particular,
the direct predecessors and successors of a node are called fanins and
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fanouts respectively. The primary inputs (PIs) and primary outputs
(POs) of a Boolean network are the sources and sinks of the DAG
respectively. The logic function at each node, taking its fanin signals
as inputs, is denoted as the local function of the node.

An And-Inverter Graph (AIG) is a Boolean network where all
nodes are two-input AND gates with optionally complemented fanin
signals. A k-LUT network (or simply LUT network) is a Boolean net-
work in which every node represents an arbitrary logic function with
at most k inputs. In an AIG or a LUT network, the delay of a node
is the length of the longest path from any PI to this node, which can
be computed recursively as dN (n) = 1 + maxn′∈fanins(n) dN (n′),
where 1 represents the signal delay at this AND/LUT node. The
delay/level of the network is the maximum delay of all POs.

For a node n in a Boolean network, a cut of n is a set of nodes
in the network such that any path from a PI to n passes through at
least one node in the set. The logic cone associated with a cut of n
is a set of nodes including n, and the intersection of all the transitive
fanins of n and all the transitive fanouts of the cut nodes.

LUT mapping transforms a Boolean network of a particular rep-
resentation into a LUT network. In this paper, we consider LUT
mapping from AIGs but the proposed approach can also be applied
to other representations. During LUT mapping, a representative cut
for each AIG node will be computed and a subset of the nodes will
be selected in the mapping, such that the associated logic cones of
their representative cuts cover all the logic (i.e., non-PI nodes) in the
AIG. There is a one-to-one correspondence between a LUT and the
associated logic cone of the representative cut of an AIG node, so we
will use these two concepts interchangeably. An illustration of LUT
mapping is shown in Figure 1.

B. Overview of LUT Mapping

In this section, we briefly introduce one of the state-of-the-art open-
source LUT mappers which are implemented in ABC [10] (command
if, referred to as ABC LUT mapper) as an overview of LUT
mapping. We use ABC LUT mapper as a template for constructing
our GPU LUT mapping engine. Although many algorithms for LUT
mapping have been proposed over the years [11]–[13], in general
their high-level ideas are similar, so our methods can be extended to
new mapping flows without much effort.

ABC LUT mapper consists of two kinds of phases that are applied
repeatedly in the framework: mapping, and cut expansion. The overall
flow is shown in Figure 2.

Both the mapping and cut expansion phases update the represen-
tative cut of each AIG node in a topological order, such that the
quality of the derived LUT network can be incrementally improved.
The mapping phases constitute the major part of the mapper, in which
each node is assigned a new representative cut chosen from a set of
candidates. In particular, a mapping phase can be delay-oriented or
area-oriented. Delay-oriented mapping phases are applied first in the
mapping flow to reduce the delay of the LUT network, followed by
area-oriented mapping passes for reducing the area without affecting
the network delay. Both types of the mapping phase share the same
algorithmic framework, and the major difference lies in the criteria
for representative cut selection. The cut expansion phase expands the
representative cut of the selected nodes towards PIs and encourages
LUT sharing, which further reduces the area of the LUT network.

After each mapping or cut expansion phase, a timing analysis pass
is performed in which the required time of each AIG node is updated.
The required time of a node specifies the maximum feasible delay
of this node in the derived LUT network such that the delay of the
current LUT network will not be increased. This information is useful
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in subsequent phases where the nodes on the non-critical paths can
have representative cuts with larger delays (bounded by the required
time) but smaller contributions of area to the LUT network.

C. GPU-parallel LUT Mapping

Similar to other EDA algorithms, LUT mapping cannot be triv-
ially GPU-parallelized by dividing the circuit into many parts and
performing computation for each part concurrently, because the
processings of different sub-circuits are interdependent. For instance,
the computation of a node’s candidate representative cut relies on the
candidate cuts of the node’s two fanins. This is just one of the many
examples of interdependence in parallel LUT mapping, and we will
see more in Section III.

The previous work [5] proposed a GPU-parallel mapping phase
that follows the paradigm of level-wise parallellism [9]: the AIG
nodes with delay i form a batch, where all the nodes in the batch are
processed concurrently and the batches are processed one by one (i.e.,
batch i+1 follows i, etc.). However, the internal mapping procedures
(cut enumeration and evaluation, representative cut selection) for a
particular node are done sequentially by one thread, which ignores
more fine-grained parallelization opportunities. Moreover, the cut
expansion phase and the timing analysis pass are not parallelized
in [5]. As will be shown in our experiments and analyses, these two
drawbacks significantly restrict the speedup of [5].

III. GPU LUT MAPPING ENGINE

This section introduces our GPU LUT mapping engine. First,
we elaborate on our fine-grained parallel mapping algorithm. We
then present novel solutions for resolving problems encountered in
cut metric computation and memory management during parallel
mapping. Finally, we introduce the parallel cut expansion phase and
timing analysis pass.

A. Fine-grained Parallelism-enabled Mapping Phase

1) Backgrounds: During the mapping phase, a set of at most C+1
cuts (referred to as priority cuts, denoted by P (n)) for each AIG
node n is computed [13]. The priority cuts of n includes its trivial
cut {n}, and the best C cuts selected from a set of candidate cuts
E(n) computed by cut enumeration:

E(n) = {u ∪ v : u ∈ P (n0), v ∈ P (n1), |u ∪ v| ≤ k}, (1)

which exhaustively examines every possible pair of cuts in the priority
cut sets of the two fanins of n respectively. In particular, the best cut
in E(n) is assigned to be the representative cut of n.

The cut ranking is determined by certain criteria that are based
on combinations of three cut metrics: delay, area-flow and exact
area [13]. The delay of a cut dC(·) is the delay of the corresponding
LUT in the derived LUT network (if this LUT is selected in the
mapping), computed as

dC(c) = 1 +max
n′∈c

dC(RC(n′)),
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where RC(·) denotes the representative cut of a node. The area-flow
of a cut c rooted at node n estimates the global area of the current
sub-LUT network rooted at n, and can also be computed efficiently in
a way similar to cut delay. Exact area is instead an area metric from
a local viewpoint, and we will introduce exact area in Section III-B.
For more related details about the cut metrics, we refer the readers
to [13]. Roughly speaking, in a delay-oriented mapping phase, delay
is the major criterion and area serves as a tie-breaker, whereas in an
area-oriented mapping phase, the criteria order is reversed.

2) Approach: We describe our proposed fine-grained parallel algo-
rithm for the priority cut set computation of one node in the mapping
phase. For our GPU LUT mapping phase, the processing of all nodes
follows the level-wise parallel paradigm introduced in Section II-C.
An illustration for the overall mapping phase framework is shown
in Figure 3. Although a sequential algorithm can be easily formulated
for computing the priority cuts of a node, it is non-trivial to do this
in parallel, since the threads need to jointly perform a single task.

Algorithm 1 shows the per-thread pseudocode of our algorithm.
We assign one thread for the enumeration (Equation 1) and metric
computation of a unique candidate cut (line 1-7), and thus (C +1)2

threads are used in total (the largest possible value for |E(n)|). Then,
we need to tackle two problems. First, after the cut evaluations are
individually done by each thread, the best C cuts need to be collected.
Intuitively, parallel sorting can be applied, but experimentally we
found it induces a large overhead. Instead, our approach relies on
the more efficient parallel reduction: we find the best cut C times,
and in each iteration, parallel reduction selects the best cut from the
candidate cuts (line 10-11). The obtained cut is masked out (line 17)
so that it will not be selected again in subsequent iterations.

The second issue is that if there is a pair of candidate cuts such
that one is a subset of (i.e., dominates) the other, we do not want
the dominated cut to appear in the priority cut set, because the local
function does not depend on some of the nodes in the dominated cut.
To achieve this, we check the dominance of all the other cuts against
the best cut once it is selected (line 13), and use parallel reduction
(line 15) for aggregating the checking results to decide whether to
keep or discard the selected best cut, as illustrated in Figure 4.

B. Fitting Local Area Evaluation into Parallel Mapping

1) Reference Counter and Exact Area: In ABC LUT mapper, each
AIG node is assigned a reference counter representing the number of

Algorithm 1 Fine-grained Parallel Mapping (Per-thread)

Input: AIG node n, max cut size k, thread id tid

Updates: priority cut set P (n), representative cut RC(n)
1: c0 ← getCut(P (fanin0(n)), tid / (C + 1))

2: c1 ← getCut(P (fanin1(n)), tid % (C + 1))

3: c← c0 ∪ c1
4: valid← (c0 ̸= ∅ and c1 ̸= ∅ and |c| ≤ k), selected← false

5: if valid then
6: Compute the delay, area-flow or exact area of c

7: if dC(c) > treq(n) then valid← false

8: if tid = 0 then P (n)← {RC(n)}
9: sync threads() ▷ synchronizing the (C + 1)2 threads

10: while |P (n)| < C do
11: cb ← reduceBest(c, valid and !selected) ▷ parallel reduction
12: if cb = ∅ then break ▷ no valid and non-selected cut left
13: if valid and c ̸= cb then f ← isSubset(c, cb)

14: else f ← false

15: dom← reduceOr(f) ▷ parallel reduction
16: if tid = 0 and !dom then P (n)← P (n) ∪ cb
17: if c = cb then selected← true ▷ mask out cb
18: sync threads()

19: if tid = 0 then
20: P (n)← P (n) ∪ {n} ▷ add the trivial cut
21: RC(n)← the first (best) cut in P (n)

fanouts of the LUT rooted at this node in the derived LUT network.
A node is selected in the mapping if it has a positive reference count
and not selected otherwise. Figure 5(a) provides an illustration.

The local area metric, namely the exact area of a cut c rooted at a
node n is computed along with a reference or dereference procedure
in which n is added to or removed from the current mapping with
c as the representative cut. During the (de)reference procedure, the
reference counts of some nodes will be updated by a depth-first
traversal. For example, in Figure 5(b), dereferencing node 9 updates
the reference counts of node 3, 4, 6 and PI a, b, c. Note that whenever
a node n′ with zero reference count is encountered, it means that the
logic of n′ is no longer useful if n is removed (or in the referencing
case, is needed if n is added), and thus n′ should be recursively
(de)referenced. Interested readers are referred to [14] for more details
about (de)referencing. The exact area of a cut c is the number of LUTs
traversed during (de)referencing. These LUTs are the ones dedicated
to driving n in the mapping.

2) Race-free and Deterministic Exact Area Computation: In par-
allel mapping, since the exact areas of different candidate cuts are
computed concurrently, data races could happen where different
threads attempt to modify the reference count of the same node,
which leads to incorrect results or non-determinism. For example,
suppose that in the situation of Figure 5(b), the exact area of two
candidate cuts of node 9 are computed concurrently by referencing.
Suppose node 4 appears in both cuts, so both threads attempt to read
and increment the reference count of 4. It could happen that one of
the threads reads 1, if the other thread has already incremented the
counter. Hence, this thread will not traverse the LUT rooted at 4 and
its computed exact area will be smaller than the correct value.

To address this issue, we record a separate copy of the changed
reference counts in the thread-local memory. The original reference
counts in the global memory are read-only and kept static in the state
before Algorithm 1 starts. When the thread attempts to change the
reference count of a node, it first checks whether there is a record
of this node in its local memory. If the record exists, it directly
modifies the value. Otherwise, it retrieves the reference count from
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the global memory and saves the changed value into its local memory.
In this way, the reference counts can be independently manipulated
by different threads without data race, and the correctness and
determinism of exact area computation are guaranteed. An additional
parallel procedure is applied after Algorithm 1 during the processing
of each level, where the old representative cuts are dereferenced and
the new ones are referenced for the nodes in the level, so that the
reference counts in the global memory are refreshed and up-to-date.

3) A New Strategy for Local Area Evaluation: In the scenario of
sequential computation, when computing the exact area of a candidate
cut c′ of node n during the mapping phase, the current representative
cut c of n is dereferenced first, followed by referencing n with the
tentative representative cut c′. We call this strategy deref-ref. In the
GPU mapping scenario, the deref-ref strategy can be problematic:
some cuts may have very large exact areas (e.g., hundreds), so the
overall runtime of Algorithm 1 can be very long since the threads
processing such cuts become the bottleneck of the parallel procedure,
even though most of the threads run quite fast. In extreme cases,
the local memory of such threads might be depleted due to having
recorded too many DFS frontier nodes and changed reference counts
during (de)referencing. To resolve this problem, we propose a new
strategy for the local area evaluation of cuts, which is based on the
following observation:

Observation 1. Different candidate cuts of a node tend to differ a
little from each other (e.g., {4, c, 3, 6} and {4, c, 3, h, i} of node 9
in Figure 5), so the traversed LUTs usually have a large portion in
common during exact area computation using the deref-ref strategy.

In our strategy, rather than dereferencing the representative cut c
first and then reference a candidate cut c′ as in the sequential scenario,
we first reference c′ and then dereference c, and use the difference
between the number of LUTs traversed in referencing and that in
dereferencing as the local area metric of c′ (referred to as ref-deref).
The ref-deref strategy improves runtime efficiency as well as reduces
thread-local memory usage of cut evaluation, because only the non-
overlapping parts of the traversed LUTs when computing the exact
area of c′ (using the deref-ref strategy) are traversed in the ref-deref
case, which usually have small sizes according to Observation 1. This
is illustrated in Figure 6 and formalized as Lemma 1.

Lemma 1. Consider a node that is selected in the mapping with
representative cut c and a candidate cut ci. Let L and Li respectively
be the sets of LUTs traversed during dereferencing c and referencing
ci using the deref-ref strategy. Then, the sets of LUTs traversed during
referencing ci and dereferencing c using the ref-deref strategy are
L′

i := Li \ L and L′′
i := L \ Li respectively.

Proof. According to the description in Section III-B1, a LUT is
traversed during referencing if and only if (1) it is not in the mapping
before referencing, and (2) it needs to be selected in the mapping after
referencing. Hence, when referencing ci, the LUTs in L are already
selected in the mapping and thus only those in Li but not in L, i.e.,
LUTs in L′

i will be traversed. A similar argument proves the other
side of the lemma about dereferencing c.

Although the local area metric computed using the ref-deref
strategy is different from the exact area computed using the deref-ref
strategy, the candidate cut ranking is not affected, as shown below.

Proposition 2. The candidate cut ranking computed by the ref-deref
strategy is the same as that computed by the deref-ref strategy.

Proof. Suppose we have a set of candidate cuts {ci}. For an arbitrary
candidate cut ci, we use the notations in Lemma 1 and Figure 6, and
define L∗

i := L ∩ Li. According to Lemma 1, the local area metric
of ci is computed as

mi = |L′
i| − |L′′

i | = (|L′
i|+ |L∗

i |)− (|L′′
i |+ |L∗

i |) = |Li| − |L|.

Note that |Li| is the exact area of ci computed using the deref-ref
strategy and |L| is a constant. Hence, the ranking of {ci} will be the
same as that computed by the deref-ref strategy.

C. Dynamic Memory Management by GPU Memory Pool

High memory consumption is a known issue for LUT map-
ping [13], which is mainly due to the storage of the priority cut sets
during the mapping phase. Statically allocating the cut sets once for
all nodes simply leads to out-of-memory on GPUs. Hence, a dynamic
memory management scheme is needed to control memory usage.

1) GPU Memory Pool: We design a GPU-based memory pool for
efficiently managing the cut set memory during the mapping phase.
The memory pool contains many entries (memory fragments of a
constant size). Each entry is in one of the three states at any time:
unallocated, active or inactive. We say that an entry is allocated if it
is active or inactive. Active means that the entry is currently in use,
and inactive means that the entry can be freed. We use a 0-1 binary
array (denoted as the activeness mask) to indicate whether an entry
is active (1) or inactive/unallocated (0).

There are three basic functionalities implemented by efficient
GPU-parallel algorithms: batched allocation, batched deallocation
and defragmentation. The schematic of the three functionalities is
shown in Figure 7. A principle of our GPU memory pool is that
the allocated memory entries are always consecutive. Following this
principle, we will assign a consecutive memory segment located at
the beginning of the unallocated part during batched allocation. For
batched deallocation, we simply mark the corresponding locations
in the activeness mask as zero in parallel. Hence, allocation and
deallocation can both be done in O(1) time. Defragmentation is to
remove all inactive entries so that there will be more unallocated
memory ready to be reused. Essentially, a parallel prefix-sum of the
activeness mask is computed to obtain the new locations of the active
entries, followed by concurrent memory copying.

2) Dynamic Cut Set Memory Management: Intuitively, to reduce
memory usage, the lifetime of cut sets should be as short as possible,
i.e., a cut set should be allocated just before it is used, and deallocated
once it is no longer in use. Hence, for node n, the level for allocating
its cut set is the level of n, and the level for deallocation is the
maximum level of the fanout nodes of n, and thus the (de)allocation
node lists for each level can be pre-computed accordingly. Batched
allocation and deallocation of cut sets using the memory pool are
respectively invoked once during the processing of each level in
the mapping phase. In our strategy, defragmentation is only invoked
before allocation when the unallocated entries are insufficient. One
can also perform defragmentation more frequently and a smaller
memory pool can be used to further reduce memory usage.
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D. Parallel Cut Expansion Phase

In the cut expansion phase, the representative cuts of the selected
nodes in the mapping are improved by the following procedure [13].
For a node n, we repeatedly find a leaf n′ in the representative cut of
n and replace it by its two fanins n′

0, n′
1 if (1) n′ exclusively drives

n and (2) n′
0, n′

1 are shared by other LUTs in the mapping. Figure 8
shows an example where the representative cut of node 5 ({4, e})
is updated to {1, 2, e} by expanding the leaf node 4. The effect of
doing so is that some LUTs dedicated to driving n are merged into
one, and thus the total area of the LUT network is reduced.

In the parallel settings, we concurrently compute all the improved
representative cuts of the selected nodes. The leaf selection relies on
manipulating the reference counts, so the strategy in Section III-B2
is applied for avoiding data race. Notably, the real update of the
representative cuts are performed in level-wise parallel along with
delay recomputation, and any improved cut whose delay exceeds the
node’s required time will be skipped so the delay of the mapped
network will not increase after the update.

E. Parallel Timing Analysis Pass

In the timing analysis pass, the required times of AIG nodes are
computed based on the following formula [13]

treq(n) = min
n′∈ref(n)

(treq(n
′)− 1),

where ref(n) denotes the fanout nodes of n in the derived LUT
network and the 1 represents the signal delay at the LUT of n′. The
required time of a PO is set as the delay of the LUT network. It
can be seen that the required time of a node is essentially propagated
from its fanout nodes, and thus a reversed topological order sweeping
is sufficient for computing the required times for all nodes.

Our parallel timing analysis is performed in the reversed level-
wise parallel fashion (i.e., from high level to low level) in which the
nodes in the same level concurrently propagate their required times
to the leaves in their representative cut. Since different nodes may
propagate their required times to a common leaf simultaneously, the
min operation is applied atomically to avoid data race.

IV. EXPERIMENTAL RESULTS

A. Set-up

The proposed GPU LUT mapping engine FineMap is implemented
in CUDA C/C++, and the experiments are performed on an Ubuntu
18.04 server with Intel Xeon Silver 4114 CPU and NVIDIA GeForce
RTX 3090 GPU with 24 GB dedicated DRAM. The benchmarks are
selected from the EPFL Combinational Benchmark Suite [15] and the
OpenCores designs in the IWLS 2005 Benchmarks [16], consisting
of arithmetic, control and random circuits. The original benchmarks
are too small to showcase the acceleration by parallelization, so
they are enlarged following the approach in [9]. The statistics of
the benchmarks are shown in Table I.

We mainly compare our algorithm with the ABC LUT mapper [13].
The parallel LUT mappers proposed in the previous works that have
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Fig. 9: (a) Acceleration ratios of the fine-grained mapping function
vs. the inter-node-parallel-only mapping function. (b) Acceleration
ratios of FineMap vs. the estimated full-flow time of FPL’10.

been mentioned in Section I are all non-open-sourced, and it is not
fair and meaningful to compare with the reported runtime in their
papers because their experimental set-ups (overall mapping flow,
benchmarks, the hardware used, etc.) are quite different from ours.
Still, we would like to compare with the GPU LUT mapping [5]
(referred to as FPL’10) in order to analyze the effectiveness of
individual components in our proposed engine. To this end, we re-
implement their mapping function with inter-node parallelism and
without our proposed fine-grained parallelism (referred to as the
FPL’10 mapping function), and set up an FPL’10 mapping phase by
replacing our mapping function (Algorithm 1) in our GPU mapping
phase with the FPL’10 mapping function.

The maximum number of LUT inputs k and the number of priority
cuts per node C is respectively set as 6 and 8 in all the experiments.
All the generated results passed combinational equivalence checking.

B. Full-flow Comparison with ABC

To ensure a fair comparison, we follow the phase order shown
in Figure 2 for FineMap. The reported runtime is the algorithm
execution time which does not include the file I/O time. As shown
in Table I, FineMap achieves 128.7× acceleration on average with
slightly better quality-of-results in terms of area, when compared
against ABC. The delays of the generated LUT networks by FineMap
are identical to those by ABC mapping. Note that FineMap runs
deterministically which is enabled by our algorithm design.

C. Comparison with FPL’10

In order to precisely analyze the efficiency contributed by the
proposed fine-grained parallel mapping, we compare the total runtime
of our mapping function (Algorithm 1) with the re-implemented
FPL’10 mapping function. The runtime of other parts in the mapping
phase such as update of reference counters (see Section III-B2) are
not included. As can be seen in Figure 9(a), the fine-grained parallel
mapping function obtains 2.3× speedup over the inter-node-parallel-
only counterpart on average, which indicates that our fine-grained
parallelism is able to further accelerate level-wise parallel mapping
while retaining good result quality.

As mentioned in Section II-C, the full-flow LUT mapping accelera-
tion of FPL’10 can be limited due to the sequential cut expansion and
timing analysis. To demonstrate this point, we compare the runtime
of FineMap against the estimated full-flow time of FPL’10, which is
calculated by summing up the time of FPL’10 mapping phase and the
time of cut expansion and timing analysis in the ABC mapper. Under
this setting, the averaged speedup of FineMap is 13.2× over FPL’10,
as shown in Figure 9(b). This is in fact an underestimation, because
the GPU-host memory copying time between different phases/passes
is not counted for the FPL’10 full-flow. To conclude, it is important
to accelerate cut expansion and timing analysis in order to achieve a
high overall speedup.



TABLE I: Results of full-flow LUT mapping.

Benchmarks
AIG Statistics ABC if FineMap (Ours)

#AIG Nodes Levels #LUTs Levels Time #LUTs Levels Time

twentythree 23339737 176 6659071 36 2322.8 6646639 36 71.3
twenty 20732893 162 5929939 33 1888.4 5927717 33 49.4
sixteen 16216836 140 4486446 29 1358.3 4471454 29 37.1
div 10xd 58620928 4372 22559744 864 4100.5 22793216 864 23.2
hyp 8xd 54869760 24801 11392768 4194 3862.1 11461888 4194 23.5
mem ctrl 10xd 47960064 114 12386304 25 2560.6 12402688 25 11.5
log2 10xd 32829440 444 8200192 77 2462.3 8056832 77 10.6
multiplier 10xd 27711488 274 6054912 53 1869.2 6000640 53 8.4
sqrt 10xd 25208832 5058 5857280 1033 1778.5 5919744 1033 11.1
square 10xd 18927616 250 4080640 50 1358.5 4007936 50 5.8
voter 10xd 14088192 70 2885632 17 760.9 2890752 17 4.2
sin 10xd 5545984 225 1492992 42 401.4 1483776 42 2.2
ac97 ctrl 10xd 14610432 12 2992128 4 441.4 2998272 4 3.2
vga lcd 5xd 4054752 24 910912 7 191.6 910976 7 1.5

Geomean Ratio 1.000 1.000 128.7 0.998 1.000 1.0

“ nxd” means that the benchmark is generated by enlarging the original one using ABC double n times.
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Fig. 10: Runtime breakdown of FineMap.
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D. Analysis on Dynamic Memory Management

In our experiments, we use a constant memory pool size of 6.7 GB
for FineMap. In contrast, the naive approach of allocating the cut
sets once-for-all requires 39.3 GB for the largest benchmark. We
found that the runtime induced by memory management (including
allocation, deallocation and defragmentation) occupies less than 3%
of the overall GPU mapping runtime on average. Hence, the proposed
memory management approach reduces memory usage by at most
5.9× with negligible runtime overhead.

E. Runtime Breakdown

The fractions of the total GPU engine runtime for mapping,
cut expansion and timing analysis are shown in Figure 10. The
acceleration ratios of these three phases/passes are 138.4×, 101.8×
and 323.9× over the ABC counterparts. It can be seen that mapping
consists of the major part of the total runtime, which indicates the
importance and necessity of our fine-grained parallelism.

F. Scaling Experiments

Figure 11 shows the speedup of FineMap over ABC on benchmarks
that are enlarged to different scales. The acceleration ratio increases
with the increasing AIG size, because more parallelization opportu-
nities can be exploited. It is worth noting that even for benchmarks
with small sizes or large delays (e.g., the leftmost points of sin and
div), FineMap is still faster than ABC, which shows the effectiveness
of our proposed framework.

V. CONCLUSION

This paper presents FineMap, an ultra-fast GPU-parallel LUT
mapping engine. The major part of the engine is a fine-grained,
highly parallel mapping phase constructed by combining level-wise
parallelism with a novel parallel algorithm for the processing of
a single node. A new strategy for the local area evaluation of a
cut and a memory-pool-based memory management method ensure
efficient mapping of large designs with moderate memory footprint.
Furthermore, high full-flow acceleration of the engine is guaranteed
by a parallel cut expansion phase and a parallel timing analysis
pass. Experiments show that FineMap obtains an overall acceleration
ratio of 128.7× over ABC with slightly better quality-of-results, and

demonstrate the effectiveness and importance of individual compo-
nents in the GPU mapping engine.
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